scholarly journals A Theoretical Model for the Rake Blockage Mitigation in Deep Cone Thickener: A Case Study of Lead-Zinc Mine in China

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhuen Ruan ◽  
Yong Wang ◽  
Aixiang Wu ◽  
Shenghua Yin ◽  
Fei Jin

Deep cone thickener (DCT) is key equipment in cemented paste backfill (CPB) technology. However, rake blockage occurs frequently in DCT during the dewatering process of the unclassified tailings being thickened from dilute slurry to thickened tailings or paste. Rake blockage has disastrous effects on the CPB operation. In order to investigate the influencing factors of rake blockage in DCT, a mathematical model of rake power in DCT was developed. In addition, stacking mud bed (made of thickened tailings) from the DCT in Huize lead-zinc mine (HLZM) in different rake blockage accidents was sampled and tested to investigate the effect of tailings characters on rake blockage. Results indicated that the concentration of the mud bed and the friction between the mud bed and the cone wall contributed to the rake blockage. The concentration and friction were influenced by the high content of coarse particles in the mud bed. Moreover, activating devices for bed mud, as the corrective and preventive action, were developed to prevent the rake blockage, which was valid in HLZM.

2014 ◽  
Vol 898 ◽  
pp. 383-386 ◽  
Author(s):  
Chun Lei Zhang ◽  
Shun Cai Wang ◽  
Fan Lu Min

Cemented paste backfill method has been widely used in many modern mines throughout the world due to the increasingly stringent environmental regulations and short of disposal land. This study presents experimental results on the use of Portland cement in the solidification of Pb-Zn tailings in China. Test results show UCS strength increase lineally with cement content, tailings concentration, and curing time, respectively. There exist a minimum cement content and tailings concentration to produce obvious strength. The fluidity decrease quickly with cement proportion and tailings concentration, under the satisfying of a minimum pumping fluidity, the increase of tailings concentration can effectively reduce the cement consumption so as to decrease the treatment cost.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Qingliang Chang ◽  
Qiang Leng ◽  
Xikui Sun ◽  
Guichen Li ◽  
Biao Zhang

Abstract The aim of this study is to explore a safe mining method to effectively excavate the deep thick coal seams in rockburst-prone mines. Based on the theory of elastic foundation and geological conditions of the Xinhe Coal Mine, the cemented paste backfill (CPB) is proposed to prevent rockburst. In this study, the roof fracture mechanism of block caving mining (BCM) and CPB methods are established. Then, the stress evolution of the surrounding rock and the subsidence of roof strata with these two methods are compared. The results show that the maximum bending moment appears in the middle of the roof, and the value is far below the critical bending moment of the roof by using the CBP. While using the BCM, this value exceeds the critical bending moment of the roof, which may trigger rockburst-related problems. In addition, there is no first weighting and periodic weighting phenomena by using the CPB method as the overburden pressure is gradually transferred to the backfill body, resulting in a safer mining condition. Furthermore, the engineering application indicates that the frequency of daily microseismic events and the burst energy are significantly reduced by using the CPB.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 717
Author(s):  
Yifan Zhao ◽  
Xingdong Zhao ◽  
Jiajia Dai ◽  
Wenlong Yu

This paper describes a case study of surface subsidence in the Hongling Lead-Zinc Mine. Hongling Lead-Zinc Mine is located in Inner Mongolia, China, about 240 km away from the border between China and Mongolia. There is a batch of outcrops of the near-surface thick steep-dip metamorphic orebody. The large-scale surface subsidence induced by underground excavation has brought some impact on the safety of herdsmen and their daily husbandry activities nearby. The requirements of reclamation for subsidence areas in the relevant laws and regulations, raise enormous pressure and risk on safe and economic operation. In this paper, a 3D numerical model of this mine was built by 3DMine and FLAC3D to analyse the excavation procedure and mechanism. The results of the simulation were in good agreement with the field subsidence data collected by satellites and unmanned aerial vehicles from 2009 to 2019. The analysis showed that the current mining method—an integrated underground method of stoping and caving—accelerated the surface subsidence, and some measures of monitoring, controlling and management were expected to take in order to improve economic and ecological benefits.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Haiyong Cheng ◽  
Jin Liu ◽  
Shunchuan Wu ◽  
Xiaoqiang Zhang

Cemented paste backfill (CPB) can effectively eliminate the risk of dam break in goaf and tailings pond which used tailings waste. Deep cone thickener (DCT) is an efficient machine for the system of paste preparation, and the concentration of slurry at the bottom is high and distributed unevenly, which will cause too much partial resistance and failure of thickener. Focusing on the above problems, fluidization design was conducted by using the fluidization theory. The delivery law of flocs was analyzed, and the isobaric surface was obtained. The equation of pressure and critical velocity of the ideal fluidized bed was acquired by analyzing the relationship between pressure and critical velocity. Based on the characteristics of tailings and distribution of the bonding zone, the arrangement, number, and working mode of spray nozzles were reformed. It is verified that the failure time of thickener decreased from 14 hours to 1 hour and the range of concentration increased from 74%∼78% to 78%∼80%, which improved the stability and reliability of DCT. The depth thickening mechanism is obtained, and the thickening method has been improved which provides a theoretical basis for the effective preparation of paste.


Sign in / Sign up

Export Citation Format

Share Document