Mechanical behavior and decay model of the sandstone in Urumqi under coupling of freeze–thaw and dynamic loading

2021 ◽  
Vol 80 (4) ◽  
pp. 2963-2978
Author(s):  
Junce Xu ◽  
Hai Pu ◽  
Ziheng Sha
Author(s):  
Zhengyang Song ◽  
Yu Wang ◽  
Heinz Konietzky ◽  
Xin Cai

2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


2017 ◽  
Vol 50 (2) ◽  
pp. 41-62
Author(s):  
Ahmad Mardoukhi ◽  
Timo Saksala ◽  
Mikko Hokka ◽  
Veli-Tapani Kuokkala

This paper presents a numerical and experimental study on the mechanical behavior of plasma shocked rock. The dynamic tensile behavior of plasma shock treated Balmoral Red granite was studied under dynamic loading using the Brazilian disc test and the Split Hopkinson Pressure Bar device. Different heat shocks were produced on the Brazilian disc samples by moving the plasma gun over the sample at different speeds. Microscopy clearly showed that as the duration of the thermal shock increases, the number of the surface cracks and their complexity increases (quantified here as the fractal dimension of the crack patterns) and the area of the damaged surface grows larger as well. At the highest thermal shock duration of 0.80 seconds the tensile strength of the Brazilian disc sample drops by approximately 20%. In the numerical simulations of the dynamic Brazilian disc test, this decrease in tensile strength was reproduced by modeling the plasma shock induced damage using the embedded discontinuity finite element method. The damage caused by the plasma shock was modeled by two methods, namely by pre-embedded discontinuity populations with zero strength and by assuming that the rock strength is lowered and conform to the Weibull distribution. This paper presents a quantitative assessment of the effects of the heat shock, the surface microstructure and mechanical behavior of the studied rock, and a promising numerical model to account for the pre-existing crack distributions in a rock material.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Xiang Li ◽  
Baijin Li ◽  
Xibing Li ◽  
Tubing Yin ◽  
Yan Wang ◽  
...  

1970 ◽  
Vol 37 (3) ◽  
pp. 765-770 ◽  
Author(s):  
A. B. Schultz

The mechanical behavior of metals subjected to uniaxial tensile impact at elevated temperatures is reported. Tests were conducted on annealed 1100 aluminum at 200, 350, 550, and 800 deg F; annealed 2024 aluminum at 200, 450, and 600 deg; and annealed C1010 steel at 430, 700, 1050, and 1400 deg F. The materials exhibit a wide range of dynamic behavior, including some in which the stress required to produce a given level of strain is significantly lowered by dynamic loading. The ratios of the dynamic ultimate stresses to the static are found to range from 0.71–6.0.


Sign in / Sign up

Export Citation Format

Share Document