Effects of fermented milk peptides supplement on blood pressure and vascular function in spontaneously hypertensive rats

2010 ◽  
Vol 19 (5) ◽  
pp. 1409-1413 ◽  
Author(s):  
Sung Min Kim ◽  
Soojin Park ◽  
Ryowon Choue
2019 ◽  
Vol 317 (5) ◽  
pp. H1013-H1027 ◽  
Author(s):  
Cameron G. McCarthy ◽  
Camilla F. Wenceslau ◽  
Fabiano B. Calmasini ◽  
Nicole S. Klee ◽  
Michael W. Brands ◽  
...  

Insufficient autophagy has been proposed as a mechanism of cellular aging, as this leads to the accumulation of dysfunctional macromolecules and organelles. Premature vascular aging occurs in hypertension. In fact, many factors that contribute to the deterioration of vascular function as we age are accelerated in clinical and experimental hypertension. Previously, we have reported decreased autophagy in arteries from spontaneously hypertensive rats (SHRs); however, the effects of restoring autophagic activity on blood pressure and vascular function are currently unknown. We hypothesized that reconstitution of arterial autophagy in SHRs would decrease blood pressure and improve endothelium-dependent relaxation. We treated 14- to 18-wk-old Wistar rats ( n = 7 vehicle and n = 8 trehalose) and SHRs ( n = 7/group) with autophagy activator trehalose (2% in drinking water) for 28 days. Blood pressure was measured by radiotelemetry, and vascular function and structure were measured in isolated mesenteric resistance arteries (MRAs) using wire and pressure myographs, respectively. Treatment with trehalose had no effect on blood pressure in SHRs; however, isolated MRAs presented enhanced relaxation to acetylcholine, in a cyclooxygenase- and reactive oxygen species-dependent manner. Similarly, trehalose treatment shifted the relaxation to the Rho kinase (ROCK) inhibitor Y-27632 to the right, indicating reduced ROCK activity. Finally, trehalose treatment decreased arterial stiffness as indicated by the slope of the stress-strain curve. Overall these data indicate that reconstitution of arterial autophagy in SHRs improves endothelial and vascular smooth muscle function, which could synergize to prevent stiffening. As a result, restoration of autophagic activity could be a novel therapeutic for premature vascular aging in hypertension. NEW & NOTEWORTHY This work supports the concept that diminished arterial autophagy contributes to premature vascular aging in hypertension and that therapeutic reconstitution of autophagic activity can ameliorate this phenotype. As vascular age is a new clinically used index for cardiovascular risk, understanding this mechanism may assist in the development of new drugs to prevent premature vascular aging in hypertension. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/behind-the-bench-episode-one-cam-squared/ .


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Soyi Park ◽  
Ki Hoon Lee ◽  
Hakjoon Choi ◽  
Goeun Jang ◽  
Wan Seok Kang ◽  
...  

Abstract Background We previously showed that enzymatically hydrolyzed Dendropanax morbiferus H. Lév. leaf (Hy-DP) and unripe Rubus coreanus Miq. (5-uRCK) extracts exhibit potent vasodilator effects on isolated aortic rings from rats partly through endothelium-dependent and endothelium-independent mechanisms. These two extracts have different mechanisms of action; however, their combined effect on antihypertensive activity has not been explored. Methods The present study aims to investigate the effect of a chronic optimized mixture (HDR-2, composed of Hy-DP and 5-uRCK in a 2:1 mass ratio) on vascular tension and blood pressure in two different hypertensive rat models. Results The results showed that HDR-2 concentration-dependently relaxed endothelium-intact and endothelium-denuded aortic rings precontracted with phenylephrine. Antihypertensive effects were assessed in vivo on a 1 kidney-1 clip (1 K-1C) rat model of hypertension and spontaneously hypertensive rats (SHRs). Acute HDR-2 treatment significantly decreased systolic blood pressure (SBP) 3 h posttreatment in both models. Chronic HDR-2 administration also significantly decreased SBP in the hypertensive rat models. Moreover, HDR-2 increased eNOS protein expression and phosphorylation levels in the aorta. Conclusion Chronic HDR-2 administration may effectively improve vascular function by decreasing plasma angiotensin-converting enzyme (ACE) activity and AngII levels. HDR-2 significantly improved acetylcholine (ACh)-induced aortic endothelium-dependent relaxation and affected sodium nitroprusside (SNP)-induced endothelium-independent relaxation in SHRs.


2002 ◽  
Vol 68 (7) ◽  
pp. 3566-3569 ◽  
Author(s):  
Anders Fuglsang ◽  
Dan Nilsson ◽  
Niels C. B. Nyborg

ABSTRACT In this study, two strains of Lactobacillus helveticus were used to produce fermented milk rich in angiotensin-converting enzyme (ACE) inhibitors. In vitro tests revealed that the two milks contained competitive inhibitors of ACE in amounts comparable to what has been obtained in previously reported studies. The two milks were administered by gavage to spontaneously hypertensive rats that had had a permanent aortic catheter inserted through the left arteria carotis, and mean arterial blood pressure and heart rate were monitored from 4 to 8 h after administration. Unfermented milk and milk fermented with a lactococcal strain that does not produce inhibitors were used as controls. Highly significant blood pressure effects were observed; i.e., milk fermented with the two strains of L. helveticus gave a more pronounced drop in blood pressure than the controls. Significant differences in heart rate effects were detected with one of the strains.


Sign in / Sign up

Export Citation Format

Share Document