Spent Hen Muscle Protein Hydrolysate Reduces Blood Pressure in Spontaneously Hypertensive Rats

2020 ◽  
Author(s):  
Hingbing Fan ◽  
Jianping Wu
Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 225 ◽  
Author(s):  
Anna Mas-Capdevila ◽  
Lisard Iglesias-Carres ◽  
Anna Arola-Arnal ◽  
Gerard Aragonès ◽  
Amaya Aleixandre ◽  
...  

AVFQHNCQE is an antihypertensive nonapeptide obtained from a chicken foot protein hydrolysate. The present study aims to investigate the mechanisms involved in its blood pressure (BP)-lowering effect. Male (17–20 weeks old) spontaneously hypertensive rats (SHR) were used in this study. Rats were divided into two groups and orally administered water or 10 mg/kg body weight (bw) AVFQHNCQE. One hour post-administration, animals of both groups were intra-peritoneally treated with 1 mL of saline or with 1 mL of saline containing 30 mg/kg bw Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, or with 1 mL of saline containing 5 mg/kg bw indomethacin, which is an inhibitor of prostacyclin synthesis (n = 6 per group). Systolic BP was recorded before oral administration and six hours after oral administration. In an additional experiment, SHR were administered water or 10 mg/kg bw AVFQHNCQE (n = 6 per group) and sacrificed six hours post-administration to study the mechanisms underlying the peptide anti-hypertensive effect. Moreover, the relaxation caused by AVFQHNCQE in isolated aortic rings from Sprague-Dawley rats was evaluated. The BP-lowering effect of the peptide was not changed after indomethacin administration but was completely abolished by L-NAME, which demonstrates that its anti-hypertensive effect is mediated by changes in endothelium-derived NO availability. In addition, AVFQHNCQE administration downregulated aortic gene expression of the vasoconstrictor factor endothelin-1 and the endothelial major free radical producer NADPH. Moreover, while no changes in plasma ACE activity were observed after its administration, liver GSH levels were higher in the peptide-treated group than in the water group, which demonstrates that AVFQHNCQE presents antioxidant properties.


2004 ◽  
Vol 92 (3) ◽  
pp. 507-512 ◽  
Author(s):  
Hsin-Yi Yang ◽  
Suh-Ching Yang ◽  
Jiun-Rong Chen ◽  
Ya-Hui Tzeng ◽  
Bor-Cheng Han

The aim of the present study was to investigate the anti-hypertensive and angiotensin-converting enzyme (ACE) inhibition effects of soyabean protein hydrolysate in spontaneously hypertensive rats (SHR). Soyabean protein hydrolysate was prepared by peptic hydrolysis and was added into the feed of SHR (0 % for the S0 group, 0·5 % for the S1 group, and 1 % for the S2 group) for 12 weeks. Systolic blood pressure and mean blood pressure of the S1 (164·3 (sem 4·7); 128·0 (sem 5·0) mmHg) and S2 (156·8 (sem 1·6); 120·8 (sem 3·4) mmHg) groups were significantly lower than those of the S0 group (199·4 (sem 5·2); 158·3 (sem 7·0) mmHg) at the end of the study. In the analysis of ACE activity, plasma and heart ACE activities of the S1 and S2 groups were significantly lower than those of the S0 group, and there were no significant differences in aorta, kidney, and lung ACE activities among all SHR. Soyabean protein hydrolysate had no significant effect on plasma lipids, electrolytes, or on left ventricular wall or aorta wall thickness. The results suggest that the long-term administration of soyabean protein hydrolysate might retard the development of hypertension in SHR by its inhibitory effect on ACE in vivo.


Sign in / Sign up

Export Citation Format

Share Document