scholarly journals A modified mark test for own-body recognition in pig-tailed macaques (Macaca nemestrina)

2010 ◽  
Vol 13 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Sara Macellini ◽  
Pier Francesco Ferrari ◽  
Luca Bonini ◽  
Leonardo Fogassi ◽  
Annika Paukner
Author(s):  
C.N. Sun

The present study demonstrates the ultrastructure of the gingival epithelium of the pig tail monkey (Macaca nemestrina). Specimens were taken from lingual and facial gingival surfaces and fixed in Dalton's chrome osmium solution (pH 7.6) for 1 hr, dehydrated, and then embedded in Epon 812.Tonofibrils are variable in number and structure according to the different region or location of the gingival epithelial cells, the main orientation of which is parallel to the long axis of the cells. The cytoplasm of the basal epithelial cells contains a great number of tonofilaments and numerous mitochondria. The basement membrane is 300 to 400 A thick. In the cells of stratum spinosum, the tonofibrils are densely packed and increased in number (fig. 1 and 3). They seem to take on a somewhat concentric arrangement around the nucleus. The filaments may occur scattered as thin fibrils in the cytoplasm or they may be arranged in bundles of different thickness. The filaments have a diameter about 50 A. In the stratum granulosum, the cells gradually become flatted, the tonofibrils are usually thin, and the individual tonofilaments are clearly distinguishable (fig. 2). The mitochondria and endoplasmic reticulum are seldom seen in these superficial cell layers.


PLoS Biology ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. e3000021 ◽  
Author(s):  
Masanori Kohda ◽  
Takashi Hotta ◽  
Tomohiro Takeyama ◽  
Satoshi Awata ◽  
Hirokazu Tanaka ◽  
...  
Keyword(s):  

1983 ◽  
Vol 4 (2) ◽  
pp. 143-157 ◽  
Author(s):  
D. M. Bowden ◽  
P. S. Weathersbee ◽  
S. K. Clarren ◽  
C. E. Fahrenbruch ◽  
B. L. Goodlin ◽  
...  

1977 ◽  
Vol 11 (10) ◽  
pp. 1057-1063 ◽  
Author(s):  
Susan Palmer ◽  
Thomas E Morgan ◽  
John L Prueitt ◽  
Janet H Murphy ◽  
W Alan Hodson

2006 ◽  
Vol 80 (2) ◽  
pp. 999-1014 ◽  
Author(s):  
W.M. Blay ◽  
S. Gnanakaran ◽  
B. Foley ◽  
N. A. Doria-Rose ◽  
B. T. Korber ◽  
...  

ABSTRACT We have analyzed changes to proviral Env gp120 sequences and the development of neutralizing antibodies (NAbs) during 1 year of simian/human immunodeficiency virus SHIV-89.6P infection in 11 Macaca nemestrina macaques. Seven macaques had significant env divergence from that of the inoculum, and macaques with greater divergence had higher titers of homologous NAbs. Substitutions in sequons encoding potential N-linked glycosylation sites (PNGs) were among the first to be established, although overall the total number of sequons did not increase significantly. The majority (19 of 23) of PNGs present in the inoculum were conserved in the sequences from all macaques. Statistically significant variations in PNGs occurred in multiple macaques within constrained regions we term “hot spots,” resulting in the selection of sequences more similar to the B consensus. These included additions on V1, the N-terminal side of V4, and the outer region of C2. Complex mutational patterns resulted in convergent PNG shifts in V2 and V5. Charge changes in Env V1V2, resulting in a net acidic charge, and a proline addition in V5 occurred in several macaques. Molecular modeling of the 89.6P sequence showed that the conserved glycans lie on the silent face of Env and that many are proximal to disulfide bonds, while PNG additions and shifts are proximal to the CD4 binding site. Nonsynonymous-to-synonymous substitution ratios suggest that these changes result from selective pressure. This longitudinal and cross-sectional study of mutations in human immunodeficiency virus (HIV) env in the SHIV background provides evidence that there are more constraints on the configuration of the glycan shield than were previously appreciated.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 414-424 ◽  
Author(s):  
C.W. Simpson ◽  
W. D. Ruwe ◽  
R. D. Myers

The neuroanatomical distribution of sites in the diencephalon and mesencephalon within which a prostaglandin (PG) of the E series elicits hyperthermia was characterized in Macaca mulatta and Macaca nemestrina. In 420 experiments undertaken in 13 animals, 225 loci were examined for their reactivity to PGE1 microinjected in a dose of 30 or 100 ng given in a volume of 1.0–1.5 μL. The regions of the brainstem for injection extended rostrally from the thermosensitive cells of the anterior hypothalamic, preoptic area (AH/POA) to the caudal border of the mesencephalon. Colonic and skin temperatures of the monkeys were measured continuously by thermistor probes. A hyperthermic response of ≥0.5 °C and a latency of ≤45 min was evoked by PGE1 within sites located primarily in the AH/POA. When PGE1 was microinjected at loci located caudal to the AH/POA, the elevation in body temperature (Tb) not only was less intense but rose at a slower rate. A higher concentration of PGE1 in these caudal regions was required to induce hyperthermia comparable with that elicited at loci within the AH/POA. In a second series of experiments either 1.0–5.0 μg 5-hydroxytryptamine (serotonin) or a concentration of 108 organisms/mL of Escherichia coli was microinjected at PGE1-reactive sites. A close anatomical concordance within the AH/POA of the animal was found in terms of the temporal characteristics and magnitude of the hyperthermia evoked by the indoleamine or lipopolysaccharide. The present results coincide with the reported neuroanatomical distribution of sites in the diencephalon and mesencephalon of other species in which PGE1 causes hyperthermia. Furthermore, these findings support the concept that the local neuronal mechanism of action of a pyrogen in the brainstem of the primate may involve phasic changes in the endogenous activity of both the serotonergic pathway and cyclo-oxygenase system in the AH/POA. In turn, their commonality of action suggests a functional similarity in their effect of shifting the set point for Tb.Key words: prostaglandin E1, hyperthermia, serotonin, Escherichia coli, anterior hypothalamus, thermoregulation, bacterial pyrogen, preoptic area, neuroanatomical localization, Macaca nemestrina, Macaca mulatta.


Sign in / Sign up

Export Citation Format

Share Document