scholarly journals Detection of three human adenovirus species in adults with acute respiratory infection in China

2011 ◽  
Vol 31 (6) ◽  
pp. 1051-1058 ◽  
Author(s):  
L. Guo ◽  
R. Gonzalez ◽  
H. Zhou ◽  
C. Wu ◽  
G. Vernet ◽  
...  
2020 ◽  
Author(s):  
Guilan Lu ◽  
Xiaomin Peng ◽  
Renqing Li ◽  
Yimeng Liu ◽  
Zhanguo Wu ◽  
...  

Abstract Background: Twelve students experienced symptoms of acute respiratory infection (ARI) at a training base in Beijing from August 26 to August 30, 2015. We investigated the cause of this ARI outbreak. Methods: In partnership with the local center for disease control, we collected a total of twelve pharyngeal swab specimens as well as demographic information for the affected patients. We used multiplex real-time PCR to screen for sixteen common respiratory viruses in these samples. To isolate HAdV, we inoculated Hep-2 cells with the human adenovirus (HAdV)-positive samples and then carried out sequencing and phylogenetic analysis of the hexon, fiber, and penton genes of the isolated adenoviruses. In addition, we analyzed the entire genome of one strain isolated from the index case to identify single-nucleotide substitutions. Results: We identified ten HAdV-positive students using multiplex real-time PCR. None of the students were co-infected with other viruses. We successfully isolated seven HAdV strains from the pharyngeal swab specimens. The coding sequences of the hexon, fiber, and penton genes of these seven HAdV strains were identical, suggesting that they represented seven strains from a single virus clone. One HAdV isolate obtained from the index case, BJDX-01-2015, was selected for whole genome analysis. From this isolate, we obtained a 34,774-nucleotide sequence. The genome of BJDX-01-2015 clustered with HAdV-B55 in phylogenetic analyses and had 99.97% identity with human adenovirus 55 isolate HAdV-B/CHN/BJ01/2011/55 (GenBank accession no. JX491639). Conclusions: We identified HAdV-B55 as the strain associated with the August 2015 ARI outbreak at a training base in Beijing. This was the first reported outbreak in Beijing due to HAdV-B55. Continuous surveillance of respiratory adenoviruses is urgently needed to understand the epidemiological and evolutionary features of HAdV-B55, and an epidemiological modeling approach may provide further insights into this emerging public health threat. Furthermore, the clinical laboratory data from this outbreak provides important reference for the clinical diagnosis and may ultimately aid in informing the development of strategies to control and prevent respiratory tract infections caused by HAdV-B55. Keywords: Outbreak, Human adenovirus, Acute Respiratory Infection, Phylogenetic Analysis, Whole Genome Sequencing


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guilan Lu ◽  
Xiaomin Peng ◽  
Renqing Li ◽  
Yimeng Liu ◽  
Zhanguo Wu ◽  
...  

2006 ◽  
Vol 87 (6) ◽  
pp. 1531-1541 ◽  
Author(s):  
Qiwei Zhang ◽  
Xiaobo Su ◽  
Sitang Gong ◽  
Qiyi Zeng ◽  
Bing Zhu ◽  
...  

Human adenovirus type 3 (HAdV-3) is a causative agent of acute respiratory disease, which is prevalent throughout the world, especially in Asia. Here, the complete genome sequences of two field strains of HAdV-3 (strains GZ1 and GZ2) isolated from children with acute respiratory infection in southern China are reported (GenBank accession nos DQ099432 and DQ105654, respectively). The genomes were 35 273 bp (GZ1) and 35 269 bp (GZ2) and both had a G+C content of 51 mol%. They shared 99 % nucleotide identity and the four early and five late regions that are characteristic of human adenoviruses. Thirty-nine protein- and two RNA-coding sequences were identified in the genome sequences of both strains. Protein pX had a predicted molecular mass of 8.3 kDa in strain GZ1; this was lower (7.6 kDa) in strain GZ2. Both strains contained 10 short inverted repeats, in addition to their inverted terminal repeats (111 bp). Comparative whole-genome analysis revealed 93 mismatches and four insertions/deletions between the two strains. Strain GZ1 infection produced a typical cytopathic effect, whereas strain GZ2 did not; non-synonymous substitutions in proteins of GZ2 may be responsible for this difference.


2013 ◽  
Vol 46 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Aripuana Watanabe ◽  
Emerson Carraro ◽  
Clarice Camargo ◽  
Diane Puerari ◽  
Sandra Guatura ◽  
...  

2006 ◽  
Vol 79 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Patrícia O. Moura ◽  
Adriana F. Roberto ◽  
Noely Hein ◽  
Evandro Baldacci ◽  
Sandra E. Vieira ◽  
...  

2020 ◽  
Author(s):  
Guilan Lu ◽  
Xiaomin Peng ◽  
Renqing Li ◽  
Yimeng Liu ◽  
Zhanguo Wu ◽  
...  

Abstract Background: Twelve students experienced symptoms of acute respiratory infection (ARI) at a training base in Beijing from August 26 to August 30, 2015. We investigated the cause of this ARI outbreak. Methods: In partnership with the local center for disease control, we collected a total of twelve pharyngeal swab specimens as well as demographic information for the affected patients. We used multiplex real-time PCR to screen for sixteen common respiratory viruses in these samples. To isolate HAdV, we inoculated Hep-2 cells with the human adenovirus (HAdV)-positive samples and then carried out sequencing and phylogenetic analysis of the hexon, fiber, and penton genes of the isolated adenoviruses. In addition, we analyzed the entire genome of one strain isolated from the index case to identify single-nucleotide substitutions. Results: We identified ten HAdV-positive students using multiplex real-time PCR. None of the students were co-infected with other viruses. We successfully isolated seven HAdV strains from the pharyngeal swab specimens. The coding sequences of the hexon, fiber, and penton genes of these seven HAdV strains were identical, suggesting that they represented seven strains from a single virus clone. One HAdV isolate obtained from the index case, BJDX-01-2015, was selected for whole genome analysis. From this isolate, we obtained a 34,774-nucleotide sequence. The genome of BJDX-01-2015 clustered with HAdV-B55 in phylogenetic analyses and had 99.97% identity with human adenovirus 55 isolate HAdV-B/CHN/BJ01/2011/55 (GenBank accession no. JX491639). Conclusions: We identified HAdV-B55 as the strain associated with the August 2015 ARI outbreak at a training base in Beijing. This was the first reported outbreak in Beijing due to HAdV-B55. Continuous surveillance of respiratory adenoviruses is urgently needed to understand the epidemiological and evolutionary features of HAdV-B55, and an epidemiological modeling approach may provide further insights into this emerging public health threat. Furthermore, the clinical laboratory data from this outbreak provides important reference for the clinical diagnosis and may ultimately aid in informing the development of strategies to control and prevent respiratory tract infections caused by HAdV-B55.


2020 ◽  
Author(s):  
Guilan Lu ◽  
Xiaomin Peng ◽  
Renqing Li ◽  
Yimeng Liu ◽  
Zhanguo Wu ◽  
...  

Abstract Background: Twelve students experienced symptoms of acute respiratory infection (ARI) at a training base in Beijing from August 26 to August 30, 2015. We investigated the cause of this ARI outbreak. Methods: In partnership with the local center for disease control, we collected a total of twelve pharyngeal swab specimens as well as demographic information for the affected patients. We used multiplex real-time PCR to screen for sixteen common respiratory viruses in these samples. To isolate HAdV, we inoculated Hep-2 cells with the human adenovirus (HAdV)-positive samples and then carried out sequencing and phylogenetic analysis of the hexon, fiber, and penton genes of the isolated adenoviruses. In addition, we analyzed the entire genome of one strain isolated from the index case to identify single-nucleotide substitutions. Results: We identified ten HAdV-positive students using multiplex real-time PCR. None of the students were co-infected with other viruses. We successfully isolated seven HAdV strains from the pharyngeal swab specimens. The coding sequences of the hexon, fiber, and penton genes of these seven HAdV strains were identical, suggesting that they represented seven strains from a single virus clone. One HAdV isolate obtained from the index case, BJDX-01-2015, was selected for whole genome analysis. From this isolate, we obtained a 34,774-nucleotide sequence. The genome of BJDX-01-2015 clustered with HAdV-B55 in phylogenetic analyses and had 99.97% identity with human adenovirus 55 isolate HAdV-B/CHN/BJ01/2011/55 (GenBank accession no. JX491639). Conclusions: We identified HAdV-B55 as the strain associated with the August 2015 ARI outbreak at a training base in Beijing. This was the first reported outbreak in Beijing due to HAdV-B55. Continuous surveillance of respiratory adenoviruses is urgently needed to understand the epidemiological and evolutionary features of HAdV-B55, and an epidemiological modeling approach may provide further insights into this emerging public health threat. Furthermore, the clinical laboratory data from this outbreak provides important reference for the clinical diagnosis and may ultimately aid in informing the development of strategies to control and prevent respiratory tract infections caused by HAdV-B55.


Sign in / Sign up

Export Citation Format

Share Document