Down-regulation of the two-component system and cell-wall biosynthesis-related genes was associated with the reversion to daptomycin susceptibility in daptomycin non-susceptible methicillin-resistant Staphylococcus aureus

2017 ◽  
Vol 36 (10) ◽  
pp. 1839-1845 ◽  
Author(s):  
Y. Iwata ◽  
K. Satou ◽  
H. Tsuzuku ◽  
K. Furuichi ◽  
Y. Senda ◽  
...  
2004 ◽  
Vol 49 (3) ◽  
pp. 807-821 ◽  
Author(s):  
Makoto Kuroda ◽  
Hiroko Kuroda ◽  
Taku Oshima ◽  
Fumihiko Takeuchi ◽  
Hirotada Mori ◽  
...  

2011 ◽  
Vol 318 (2) ◽  
pp. 168-176 ◽  
Author(s):  
Mette Bonde ◽  
Dorte H. Højland ◽  
Hans Jørn Kolmos ◽  
Birgitte H. Kallipolitis ◽  
Janne K. Klitgaard

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 821
Author(s):  
Maite Villanueva ◽  
Melanie Roch ◽  
Iñigo Lasa ◽  
Adriana Renzoni ◽  
William L. Kelley

Methicillin-resistant Staphylococcus aureus infections are a global health problem. New control strategies, including fifth-generation cephalosporins such as ceftaroline, have been developed, however rare sporadic resistance has been reported. Our study aimed to determine whether disruption of two-component environmental signal systems detectably led to enhanced susceptibility to ceftaroline in S. aureus CA-MRSA strain MW2 at sub-MIC concentrations where cells normally continue to grow. A collection of sequential mutants in all fifteen S. aureus non-essential two-component systems (TCS) was first screened for ceftaroline sub-MIC susceptibility, using the spot population analysis profile method. We discovered a role for both ArlRS and VraSR TCS as determinants responsible for MW2 survival in the presence of sub-MIC ceftaroline. Subsequent analysis showed that dual disruption of both arlRS and vraSR resulted in a very strong ceftaroline hypersensitivity phenotype. Genetic complementation analysis confirmed these results and further revealed that arlRS and vraSR likely regulate some common pathway(s) yet to be determined. Our study shows that S. aureus uses particular TCS environmental sensing systems for this type of defense and illustrates the proof of principle that if these TCS were inhibited, the efficacy of certain antibiotics might be considerably enhanced.


2011 ◽  
Vol 79 (6) ◽  
pp. 2154-2167 ◽  
Author(s):  
Ting Xue ◽  
Yibo You ◽  
De Hong ◽  
Haipeng Sun ◽  
Baolin Sun

ABSTRACTThe Kdp system is widely distributed among bacteria. InEscherichia coli, the Kdp-ATPase is a high-affinity K+uptake system and its expression is activated by the KdpDE two-component system in response to K+limitation or salt stress. However, information about the role of this system in many bacteria still remains obscure. Here we demonstrate that KdpFABC inStaphylococcus aureusis not a major K+transporter and that the main function of KdpDE is not associated with K+transport but that instead it regulates transcription for a series of virulence factors through sensing external K+concentrations, indicating that this bacterium might modulate its infectious status through sensing specific external K+stimuli in different environments. Our results further reveal thatS. aureusKdpDE is upregulated by the Agr/RNAIII system, which suggests that KdpDE may be an important virulence regulator coordinating the external K+sensing and Agr signaling during pathogenesis in this bacterium.


F1000Research ◽  
2016 ◽  
Vol 4 ◽  
pp. 79 ◽  
Author(s):  
Kevin Patel ◽  
Dasantila Golemi-Kotra

The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of cidABC and lrgAB operons, the gene products of which are involved in programmed cell death and lysis. In vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the in vivo observations that regulation of the lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.


Sign in / Sign up

Export Citation Format

Share Document