Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology

2013 ◽  
Vol 16 (5) ◽  
pp. 819-831 ◽  
Author(s):  
Tekin Şahan ◽  
Dilara Öztürk
2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2016 ◽  
Vol 13 (11) ◽  
pp. 1255-1263 ◽  
Author(s):  
S.M. Zakir Hossain ◽  
Nahid Sultana ◽  
Muhammad Faisal Irfan ◽  
Elamin Mohammed Ali Elkanzi ◽  
Yousuf Ahmed Mirza Al-Aali ◽  
...  

2021 ◽  
Author(s):  
Melanie A Heck ◽  
Ingrida Melkova ◽  
Clemens Posten ◽  
Eva L. Decker ◽  
Ralf Reski

Peat moss (Sphagnum) biomass is a promising bioresource to substitute peat in growing media with a renewable material. For sustainable production on a large scale, the productivity of Sphagnum mosses has to be increased by optimizing culture conditions. Optimization was achieved using fractional factorial design and response surface methodology based on central composite design to determine concentrations of eight factors leading to highest biomass yield. We improved a standard Sphagnum medium by reducing the concentrations of NH4NO3, KH2PO4, KCl, MgSO4, Ca(NO3)2, FeSO4 and a microelement solution up to 50 %. Together with a reduced sucrose concentration for Sphagnum fuscum, while it remained unchanged for Sphagnum palustre and Sphagnum squarrosum, moss productivities were enhanced for all tested species in shake flasks. Further upscaling to 5 L photobioreactors increased the biomass yield up to nearly 50-fold for S. fuscum, 40-fold for S. palustre and 25-fold for S. squarrosum in 24 days.


2019 ◽  
Author(s):  
Yasin Orooji ◽  
Fatemeh Noorisafa ◽  
Nahid Imami ◽  
Amir R. Chaharmahali

<p>Using experimental design and statistical analysis (½ Fractional Factorial Design), this study investigates the effect of different parameters in the membrane fabrication on the performance of nanocomposite PES/TiO<sub>2</sub> membrane. </p>


Author(s):  
Joachim S. Graff ◽  
Raphael Schuler ◽  
Xin Song ◽  
Gustavo Castillo-Hernandez ◽  
Gunstein Skomedal ◽  
...  

AbstractThermoelectric modules can be used in waste heat harvesting, sensing, and cooling applications. Here, we report on the fabrication and performance of a four-leg module based on abundant silicide materials. While previously optimized Mg2Si0.3Sn0.675Bi0.025 is used as the n-type leg, we employ a fractional factorial design based on the Taguchi methods mapping out a four-dimensional parameter space among Mnx-εMoεSi1.75−δGeδ higher manganese silicide compositions for the p-type material. The module is assembled using a scalable fabrication process, using a Cu metallization layer and a Pb-based soldering paste. The maximum power output density of 53 μW cm–2 is achieved at a hot-side temperature of 250 °C and a temperature difference of 100 °C. This low thermoelectric output is related to the high contact resistance between the thermoelectric materials and the metallic contacts, underlining the importance of improved metallization schemes for thermoelectric module assembly.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 287
Author(s):  
Luciana S. Rocha ◽  
Érika M. L. Sousa ◽  
María V. Gil ◽  
João A. B. P. Oliveira ◽  
Marta Otero ◽  
...  

In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22–27 emu g−1), and their high SBET (741–795 m2 g−1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L−1).


Sign in / Sign up

Export Citation Format

Share Document