Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis)

2020 ◽  
Vol 20 (4) ◽  
pp. 497-508 ◽  
Author(s):  
Anqi Xing ◽  
Yuanchun Ma ◽  
Zichen Wu ◽  
Shouhua Nong ◽  
Jiaojiao Zhu ◽  
...  
Genomics ◽  
2020 ◽  
Vol 112 (4) ◽  
pp. 2866-2874 ◽  
Author(s):  
Yu Duan ◽  
Xujun Zhu ◽  
Jiazhi Shen ◽  
Hongqing Xing ◽  
Zhongwei Zou ◽  
...  

2021 ◽  
Vol 62 (2) ◽  
pp. 249-264
Author(s):  
Zai-Bao Zhang ◽  
Yuan-Jin Jin ◽  
Hou-Hong Wan ◽  
Lin Cheng ◽  
Zhi-Guo Feng

2020 ◽  
Author(s):  
Huan Wang ◽  
ZhaoTang Ding ◽  
Mengjie Gou ◽  
Jianhui Hu ◽  
Yu Wang ◽  
...  

Abstract Background: Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants.Results: In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency.Conclusions: We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huan Wang ◽  
Zhaotang Ding ◽  
Mengjie Gou ◽  
Jianhui Hu ◽  
Yu Wang ◽  
...  

Abstract Background Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants. Results In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency. Conclusions We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.


2020 ◽  
Author(s):  
Wenjun Qian ◽  
Huan Wang ◽  
ZhaoTang Ding ◽  
Mengjie Gou ◽  
Jianhui Hu ◽  
...  

Abstract Background Autophagy, meaning ‘self-eating’, is required for degradation and recycling of cytoplasmic constituents under stressful or non-stressful conditions, thereby contributing to maintaining cellular homeostasis, delaying aged and longevity in eukaryotes. So far, the functions of autophagy have been intensively studied in yeast, mammals and model plants, but few studies have focused on economic crops, especially for tea plants, the roles of autophagy in coping with different environment stimuluses have not yet been detailed. Therefore, exploring the functions of autophagy related genes in tea plant would contribute to further understanding the mechanism of autophagy in response to stresses in woody plants. Results Here, we totally identified 35 CsARGs in tea plant. Each CsARG is highly conserved with its homologues stemmed from other plant species, except for CsATG14. Tissue-specific expression analysis revealed that the abundances of CsARGs were varied with different tissues, but CsATG8c/i showed a certain degree of tissue specificity, respectively. Under hormones and abiotic stress conditions, most of CsARGs were up-regulated at different treatment time points. In addition, the transcriptions of 10 CsARGs were higher in cold-resistance cultivar ‘Longjing43’ than the cold-susceptible cultivar ‘Damianbai’ during CA periods, however, CsATG101 showed a contrary tendency. Conclusions We comprehensively analyzed the bioinformatics and physiological roles of CsARGs in tea plant, and these results provide the basis for deepen exploring the molecular mechanism of autophagy involved in tea plant growth and development and stress responses. Meanwhile, some CsARGs would be served as putative molecular markers for cold-resistance breeding of tea plant in future.


Sign in / Sign up

Export Citation Format

Share Document