Thermal hydrolysis pre-treatment combined with anaerobic digestion for energy recovery from organic wastes

2020 ◽  
Vol 22 (5) ◽  
pp. 1370-1381 ◽  
Author(s):  
Xiaohui Liu ◽  
Changmin Lee ◽  
Jae Young Kim
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
J. A. Barrios ◽  
A. Cano ◽  
F. F. Rivera ◽  
M. E. Cisneros ◽  
U. Durán

Abstract Background Most of the organic content of waste activated sludge (WAS) comprises microbial cells hard to degrade, which must be pre-treated for energy recovery by anaerobic digestion (AD). Electrooxidation pre-treatment (EOP) with boron-doped diamond (BDD) electrode have been considered a promising novel technology that increase hydrolysis rate, by the disintegrating cell walls from WAS. Although electrochemical oxidation could efficiently solubilize organic substances of macromolecules, limited reports are available on EOP of WAS for improving AD. In this endeavour, the mathematical optimization study and the energy analysis of the effects of initial total solids concentrations [TS] of WAS and current density (CD) during EOP on the methane production and removal of chemical oxygen demand (COD) and volatile solids (VS) were investigated. Because limited reports are available on EOP of WAS for improving biogas production, it is not well understood; however, it has started to attract interest of scientists and engineers. Results In the present work, the energy recovery as biogas and WAS conversion were comprehensively affected by CD and [TS], in an integrated EOP and AD system. When working with WAS at 3% of [TS] pre-treated at current density of 24.1 mA/cm2, the highest COD and VS removal were achieved, making it possible to obtain the maximum methane (CH4) production of 305 N-L/kg VS and a positive energy balance of 1.67 kWh/kg VS. Therefore, the current densities used in BDD electrode are adequate to produce the strong oxidant (hydroxyl radical, ·OH) on the electrode surface, allow the oxidation of organic compounds that favours the solubilization of particulate matter and VS from WAS. Conclusions The improvement of VS removal and COD solubilization were due to the effects of pre-treatments, which help to break down the microbial cells for faster subsequent degradation; this allows a decomposition reaction that leads to biodegrade more compounds during AD. The balance was positive, suggesting that even without any optimization the energy used as electricity could be recovered from the increased methane production. It is worth noting that this kind of analysis have not been sufficiently studied so far. It is therefore important to understand how operational parameters can influence the pre-treatment and AD performances. The current study highlights that the mathematical optimization and energy analysis can make the whole process more convenient and feasible.


Chemosphere ◽  
2021 ◽  
pp. 133376
Author(s):  
Mariana Moreira de Oliveira ◽  
Paul Moretti ◽  
Carina Malinowsky ◽  
Rémy Bayard ◽  
Pièrre Buffière ◽  
...  

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


2011 ◽  
Vol 64 (2) ◽  
pp. 375-383 ◽  
Author(s):  
S. I. Pérez-Elvira ◽  
M. Fdz-Polanco ◽  
F. Fdz-Polanco

Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 °C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 Lbiogas/Ldigester·day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate.


2013 ◽  
Vol 116 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Yingjun Zhou ◽  
Masaki Takaoka ◽  
Wei Wang ◽  
Xiao Liu ◽  
Kazuyuki Oshita

2020 ◽  
Vol 15 (1) ◽  
pp. 120-129
Author(s):  
K. Richard Tsang ◽  
Mary Strawn ◽  
Tom Broderick ◽  
Jonathan Treadway

Abstract Arlington County, Virginia has recently completed a wastewater solids master plan addressing the near- and long- term needs of the County's biosolids program. The planning process included comprehensive evaluation of over 70 technologies. The project team included representatives from engineering, operations, maintenance, and management from the County; a consultant team of national and local experts; a technical expert advisory committee from consultants, utilities, and academia; and community stakeholders. There were multiple project team workshops and regular presentations to stakeholders, feedback from which was incorporated into the planning process. Ultimately, there was a detailed evaluation of four process options – lime-stabilization (the current process), mesophilic anaerobic digestion, thermal hydrolysis pre-treatment leading to anaerobic digestion, and anaerobic digestion with thermal drying. The four options were evaluated against nineteen criteria representing economic, operating, environmental, and social issues of the ‘quadruple bottom line.’ The County has now developed a more sustainable biosolids program plan that includes the development of anaerobic digestion with thermal hydrolysis pre-treatment to produce a commercially viable biosolids product. The process will also produce biogas for use as fuel. The collaborative approach, which included evaluating numerous options and engaging with many stakeholders, contributed to the project's success and has provided a resilient roadmap towards a more sustainable biosolids program.


2006 ◽  
Vol 54 (5) ◽  
pp. 101-108 ◽  
Author(s):  
B. Pickworth ◽  
J. Adams ◽  
K. Panter ◽  
O.E. Solheim

Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4,250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours.


Sign in / Sign up

Export Citation Format

Share Document