Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet

Limnology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Krzysztof Zawierucha ◽  
Jakub Buda ◽  
Mirosława Pietryka ◽  
Dorota Richter ◽  
Edyta Łokas ◽  
...  
2021 ◽  
Author(s):  
Prateek Gantayat ◽  
Amber Leeson ◽  
James Lea ◽  
Noel Gourmelen ◽  
Xavier Fettweis

<p><strong>The dynamics of the Greenland Ice Sheet (GrIS) is greatly affected by surface meltwater that is routed from the surface to the bed, for example when a supraglacial lake (SGL) drains. The South-West Greenland Ice Sheet (SWGrIS) has an abundance of such lakes that form and decay over every hydrological year. In case a crevasse is opened up underneath an SGL, the lake water is likely to drain via the crevasse into the ice-sheet’s bed. This in turn influences the ice sheet motion by increasing the lubrication at the ice-sheet’s base. SGLs may also either drain laterally via a supra-glacial meltwater channel or the water they contain can stay put throughout the hydrological year, refreezing in the winter. These processes may affect the ice rheology in addition to influencing ice flow. While simulating the future evolution of the GrIS, it is thus important to account for processes associated with the evolution of SGLs. Until now, however, none of the existing ice sheet models have fully accounted for these processes, in part because no hydrological model yet includes them all. Here we propose a new process-based hydrological model for the SWGrIS which fully accounts for the evolution of  SGLs. The model consists of four units. The first is a surface water routing unit where the daily-generated surface meltwater is routed assuming steepest decent into the surface depressions forming SGLs. The second unit uses principles of Linear Elastic Fracture Mechanics (LEFM) to deal with the scenario where an SGL drains into the bed through an underlying crevasse. The third deals with the SGL drainage event that occurs when a surface meltwater channel gets incised though the ice sheet’s surface due to erosion from the SGL’s overflowing meltwater i.e. channel incision. Finally, the fourth unit simulates the freezing/unfreezing of SGLs by calculating the energy balance at the SGL’s surface. Using this model forced by Modèle Atmosphérique Régionale (MAR) derived daily surface melt-water values we quantify a) the amount and location of surface meltwater injection to the ice-sheet’s bed via moulins or crevasses and ,b) the meltwater that is either  retained in SGL or drained overland via meltwater channels and stored elsewhere over the period 2011-2020, in the Leverett glacier catchment. In the future, we plan to integrate this hydrological model with the sophisticated state-of-the-art BISICLES ice sheet model.</strong></p>


2017 ◽  
Author(s):  
Andrew J. Tedstone ◽  
Jonathan L. Bamber ◽  
Joseph M. Cook ◽  
Christopher J. Williamson ◽  
Xavier Fettweis ◽  
...  

Abstract. Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to declining albedo and enhanced surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of 'dark' ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates, to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large inter-annual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare-ice sectors of the GrIS will evolve, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years, but so too does its duration (from 0 % to > 80 % of June–July–August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant inter-annual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics.We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological pre-requisites of liquid meltwater presence and sufficient photosynthetically-active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.


2017 ◽  
Vol 11 (6) ◽  
pp. 2491-2506 ◽  
Author(s):  
Andrew J. Tedstone ◽  
Jonathan L. Bamber ◽  
Joseph M. Cook ◽  
Christopher J. Williamson ◽  
Xavier Fettweis ◽  
...  

Abstract. Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June–July–August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological prerequisites of liquid meltwater presence and sufficient photosynthetically active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.


1990 ◽  
Vol 36 (122) ◽  
pp. 17-30 ◽  
Author(s):  
Steven M. Hodge ◽  
David L. Wright ◽  
Jerry A. Bradley ◽  
Robert W. Jacobel ◽  
Neils Skou ◽  
...  

AbstractThe surface and bottom topography of the central Greenland ice sheet was determined from airborne ice-radar soundings over a 180 km by 180 km grid centered on the 1974 “Summit” site (lat. 72°18′N., long. 37°55′W.), using the Technical University of Denmark 60 MHz ice radar. Over 6100 km of high-quality radar data were obtained, covering over 99'% of the grid, along lines spaced 12.5 km apart in both north-south and east-west directions. Aircraft location was done with an inertial navigation system (INS) and a pressure altimeter, with control provided by periodically flying over a known point at the center of the grid. The ice radar was used to determine ice thickness; the surface topography was determined independently using height-above-terrain measurements from the aircraft’s radar altimeter. The calculated surface topography is accurate to about ±6 m, with this error arising mostly from radar-altimeter errors. The ice thickness and bottom topography are accurate to about ±50 m, with this error dominated by the horizontal navigation uncertainties due to INS drift; this error increases to about ±125 m in areas of rough bottom relief (about 12% of the grid).The highest point on Greenland is at lat. 72°34′ N., long. 37°38′W., at an altitude of 3233 ± 6 m a.s.l. The ice surface at this point divides into three sectors, one facing north, one east-south-east, and one west-south-west, with each having a roughly uniform slope. The ice divide between the last two sectors is a well-defined ridge running almost due south. The ice is about 3025 m thick at the summit. Excluding the mountainous north-east corner of the grid, where the ice locally reaches a thickness of about 3470 m and the bed dips to about 370 m below sea-level, the maximum ice thickness, approximately 3375 m, occurs about 97 km south-south-west of the summit. The average bed altitude over the entire grid is 180 m and the average ice thickness is 2975 ± 235 m. The ice in most of the south-west quadrant of the grid is over 3200 m thick, and overlies a relatively smooth, flat basin with altitudes mostly below sea-level. There is no predominant direction to the basal topography over most of the grid; it appears to be undulating, rolling terrain with no obvious ridge/valley structure. The summit of the ice sheet is above the eastern end of a relatively large, smooth, flat plateau, about 10–15 km wide and extending about 50 km to the west. If the basal topography were the sole criterion, then a site somewhere on this plateau or in the south-west basin would be suitable for the drilling of a new deep ice core.


1990 ◽  
Vol 36 (122) ◽  
pp. 17-30 ◽  
Author(s):  
Steven M. Hodge ◽  
David L. Wright ◽  
Jerry A. Bradley ◽  
Robert W. Jacobel ◽  
Neils Skou ◽  
...  

AbstractThe surface and bottom topography of the central Greenland ice sheet was determined from airborne ice-radar soundings over a 180 km by 180 km grid centered on the 1974 “Summit” site (lat. 72°18′N., long. 37°55′W.), using the Technical University of Denmark 60 MHz ice radar. Over 6100 km of high-quality radar data were obtained, covering over 99'% of the grid, along lines spaced 12.5 km apart in both north-south and east-west directions. Aircraft location was done with an inertial navigation system (INS) and a pressure altimeter, with control provided by periodically flying over a known point at the center of the grid. The ice radar was used to determine ice thickness; the surface topography was determined independently using height-above-terrain measurements from the aircraft’s radar altimeter. The calculated surface topography is accurate to about ±6 m, with this error arising mostly from radar-altimeter errors. The ice thickness and bottom topography are accurate to about ±50 m, with this error dominated by the horizontal navigation uncertainties due to INS drift; this error increases to about ±125 m in areas of rough bottom relief (about 12% of the grid).The highest point on Greenland is at lat. 72°34′ N., long. 37°38′W., at an altitude of 3233 ± 6 m a.s.l. The ice surface at this point divides into three sectors, one facing north, one east-south-east, and one west-south-west, with each having a roughly uniform slope. The ice divide between the last two sectors is a well-defined ridge running almost due south. The ice is about 3025 m thick at the summit. Excluding the mountainous north-east corner of the grid, where the ice locally reaches a thickness of about 3470 m and the bed dips to about 370 m below sea-level, the maximum ice thickness, approximately 3375 m, occurs about 97 km south-south-west of the summit. The average bed altitude over the entire grid is 180 m and the average ice thickness is 2975 ± 235 m. The ice in most of the south-west quadrant of the grid is over 3200 m thick, and overlies a relatively smooth, flat basin with altitudes mostly below sea-level. There is no predominant direction to the basal topography over most of the grid; it appears to be undulating, rolling terrain with no obvious ridge/valley structure. The summit of the ice sheet is above the eastern end of a relatively large, smooth, flat plateau, about 10–15 km wide and extending about 50 km to the west. If the basal topography were the sole criterion, then a site somewhere on this plateau or in the south-west basin would be suitable for the drilling of a new deep ice core.


2021 ◽  
Author(s):  
Niklas Bohn ◽  
Biagio Di Mauro ◽  
Roberto Colombo ◽  
David Ray Thompson ◽  
Jouni Susiluoto ◽  
...  

2020 ◽  
Author(s):  
Joshua Williams ◽  
Noel Gourmelen ◽  
Peter Nienow

<p>Observations of ice dynamical change in the interior of the Greenland Ice Sheet, at distances >~100 km from the ice-margin, are sparse, exhibiting very low spatial and temporal resolution (e.g. Sole et al., 2013; Doyle et al., 2014; Van de Wal et al., 2015). As such, the behaviour of interior Greenland ice represents a significant unknown in our understanding of the likely response of the ice sheet to oceanic and atmospheric forcing. The observation of a 2.2 % increase in ice velocity over a three-year period at a location 140 km from the ice margin in South West Greenland (Doyle et a., 2014) has been inferred to suggest that the ice sheet interior has undergone persistent flow acceleration. It remains unclear, however, whether this observation is representative of wider trends across the ice sheet.</p><p>Here, we investigate changes in ice motion within Greenland’s interior by utilising recent satellite-derived ice velocities covering the period 2013-2018 (Gardner et al., 2019) in conjunction with in-situ velocities collected at 30 km intervals along the 2000 m elevation contour during the mid-1990s (Thomas et al., 2000). Previous observations from the late-1990s/early-2000s through to late-2000s/early-2010s have revealed significant speed-up at many of Greenland’s tidewater glaciers (e.g. Bevan et al., 2012; Murray et al., 2015), in contrast to widespread deceleration within the ablation zone of the South West land-terminating margin (e.g. Tedstone et al., 2015; Van de Wal et al., 2015; Stevens et al., 2016). The recent availability of satellite data enables us to compare annual ice velocities from the period 2013-2018 to those collected at GPS stations in the mid-1990s, thereby enabling us to detect any long-term changes in ice-sheet wide inland ice motion during a period of considerable climatic and potentially significant dynamic change.</p><p>We observe multi-decadal interior ice acceleration of >15 % at Jakobshavn Isbrae, with similar inland accelerations at Kangerlugssuaq, Sermiligarssuk Brae and Narsap Sermia, and smaller velocity increases upstream of other marine-terminating outlets; these accelerations suggest that dynamic change at the margins has propagated considerable distances into the ice sheet interior. By contrast, ice velocities have slowed inland of some tidewater outlets such as Helheim Glacier, Umiamako Isbrae and Hagen Brae, confirming complex spatial variability in interior response to oceanic and atmospheric forcing. Furthermore, whilst prior work suggested that South West Greenland’s land-terminating sector experienced persistent interior speed-up between 2009 and 2012 (Doyle et al., 2014), our results reveal a >10% multi-decadal slowdown within the same sector, suggesting this region is resilient to recent increases in surface melt forcing.</p>


1990 ◽  
Vol 14 ◽  
pp. 307-310 ◽  
Author(s):  
C.R. Warren ◽  
N.R.J. Hulton

The retreat of the West Greenland ice sheet from its Sisimiut (Wisconsinan) glacial maximum, was punctuated by a series of Stillstands or small readvances that formed numerous moraines. These landforms have been interpreted in the past as the result of short-term, regional falls in ablation-season temperatures. However, mapping of the geomorphological evidence south of Ilulissat (Jakobshavn) suggests that retreat behaviour was not primarily governed by climate, and therefore that the former ice margins are not palaeoclimatically significant. During warm climate ice-sheet wastage, the successive quasi-stable positions adopted by the ice margin were largely governed by topography. The retreat of the inherently unstable calving glaciers was arrested only at topographically-determined locations where stability could be achieved.


2014 ◽  
Vol 119 (2) ◽  
pp. 631-645 ◽  
Author(s):  
Mark E. Inall ◽  
Tavi Murray ◽  
Finlo R. Cottier ◽  
Kilian Scharrer ◽  
Timothy J. Boyd ◽  
...  

1993 ◽  
Vol 159 ◽  
pp. 109-114
Author(s):  
R.J Braithwaite

Firn temperatures and meltwater refreezing are studied in the lower accumulation area of the Greenland ice sheet as part of an international project on sea level changes. In the study area, 1440–1620 m a.s.l., meltwater penetrates several metres into the firn and refreezes, warming the firn by 5–7°C compared with annual air temperatures. This firn warming is closely related to surface melt which can be estimated by several methods. A relatively high degree-day factor is needed to account for the melt rates found.


Sign in / Sign up

Export Citation Format

Share Document