scholarly journals Glacier ice surface properties in South-West Greenland Ice Sheet: first estimates from PRISMA imaging spectroscopy data

2021 ◽  
Author(s):  
Niklas Bohn ◽  
Biagio Di Mauro ◽  
Roberto Colombo ◽  
David Ray Thompson ◽  
Jouni Susiluoto ◽  
...  
2021 ◽  
Author(s):  
Prateek Gantayat ◽  
Amber Leeson ◽  
James Lea ◽  
Noel Gourmelen ◽  
Xavier Fettweis

<p><strong>The dynamics of the Greenland Ice Sheet (GrIS) is greatly affected by surface meltwater that is routed from the surface to the bed, for example when a supraglacial lake (SGL) drains. The South-West Greenland Ice Sheet (SWGrIS) has an abundance of such lakes that form and decay over every hydrological year. In case a crevasse is opened up underneath an SGL, the lake water is likely to drain via the crevasse into the ice-sheet’s bed. This in turn influences the ice sheet motion by increasing the lubrication at the ice-sheet’s base. SGLs may also either drain laterally via a supra-glacial meltwater channel or the water they contain can stay put throughout the hydrological year, refreezing in the winter. These processes may affect the ice rheology in addition to influencing ice flow. While simulating the future evolution of the GrIS, it is thus important to account for processes associated with the evolution of SGLs. Until now, however, none of the existing ice sheet models have fully accounted for these processes, in part because no hydrological model yet includes them all. Here we propose a new process-based hydrological model for the SWGrIS which fully accounts for the evolution of  SGLs. The model consists of four units. The first is a surface water routing unit where the daily-generated surface meltwater is routed assuming steepest decent into the surface depressions forming SGLs. The second unit uses principles of Linear Elastic Fracture Mechanics (LEFM) to deal with the scenario where an SGL drains into the bed through an underlying crevasse. The third deals with the SGL drainage event that occurs when a surface meltwater channel gets incised though the ice sheet’s surface due to erosion from the SGL’s overflowing meltwater i.e. channel incision. Finally, the fourth unit simulates the freezing/unfreezing of SGLs by calculating the energy balance at the SGL’s surface. Using this model forced by Modèle Atmosphérique Régionale (MAR) derived daily surface melt-water values we quantify a) the amount and location of surface meltwater injection to the ice-sheet’s bed via moulins or crevasses and ,b) the meltwater that is either  retained in SGL or drained overland via meltwater channels and stored elsewhere over the period 2011-2020, in the Leverett glacier catchment. In the future, we plan to integrate this hydrological model with the sophisticated state-of-the-art BISICLES ice sheet model.</strong></p>


1989 ◽  
Vol 35 (120) ◽  
pp. 214-216 ◽  
Author(s):  
Peter G. Knight

Abstract This paper tests and falsifies the theory that the development of thick sequences of vertically stacked clean and debris-laden ice layers at the margin of the Greenland ice sheet can be attributed solely to simple freezing-on of material at the bed. Isotopic analysis in δD and δ18O of ice from the ice-sheet margin near Søndre Stramfjord indicates that the debris-rich and debris-poor elements of the basal sequence have different origins. While the debris bands display isotopic fractionation consistent with a freezing origin, the intercalated clean ice layers do not. The clean ice layers have isotopic values indistinguishable from debris-bearing ice immediately above the debris-band sequence and from unaltered glacier ice, and are entrained by a different process from the debris bands. Debris may be entrained by freezing at the bed, but the development of a vertically stacked sequence of debris bands must be attributed to some other mechanism.


Limnology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Krzysztof Zawierucha ◽  
Jakub Buda ◽  
Mirosława Pietryka ◽  
Dorota Richter ◽  
Edyta Łokas ◽  
...  

2020 ◽  
Author(s):  
Joshua Williams ◽  
Noel Gourmelen ◽  
Peter Nienow

<p>Observations of ice dynamical change in the interior of the Greenland Ice Sheet, at distances >~100 km from the ice-margin, are sparse, exhibiting very low spatial and temporal resolution (e.g. Sole et al., 2013; Doyle et al., 2014; Van de Wal et al., 2015). As such, the behaviour of interior Greenland ice represents a significant unknown in our understanding of the likely response of the ice sheet to oceanic and atmospheric forcing. The observation of a 2.2 % increase in ice velocity over a three-year period at a location 140 km from the ice margin in South West Greenland (Doyle et a., 2014) has been inferred to suggest that the ice sheet interior has undergone persistent flow acceleration. It remains unclear, however, whether this observation is representative of wider trends across the ice sheet.</p><p>Here, we investigate changes in ice motion within Greenland’s interior by utilising recent satellite-derived ice velocities covering the period 2013-2018 (Gardner et al., 2019) in conjunction with in-situ velocities collected at 30 km intervals along the 2000 m elevation contour during the mid-1990s (Thomas et al., 2000). Previous observations from the late-1990s/early-2000s through to late-2000s/early-2010s have revealed significant speed-up at many of Greenland’s tidewater glaciers (e.g. Bevan et al., 2012; Murray et al., 2015), in contrast to widespread deceleration within the ablation zone of the South West land-terminating margin (e.g. Tedstone et al., 2015; Van de Wal et al., 2015; Stevens et al., 2016). The recent availability of satellite data enables us to compare annual ice velocities from the period 2013-2018 to those collected at GPS stations in the mid-1990s, thereby enabling us to detect any long-term changes in ice-sheet wide inland ice motion during a period of considerable climatic and potentially significant dynamic change.</p><p>We observe multi-decadal interior ice acceleration of >15 % at Jakobshavn Isbrae, with similar inland accelerations at Kangerlugssuaq, Sermiligarssuk Brae and Narsap Sermia, and smaller velocity increases upstream of other marine-terminating outlets; these accelerations suggest that dynamic change at the margins has propagated considerable distances into the ice sheet interior. By contrast, ice velocities have slowed inland of some tidewater outlets such as Helheim Glacier, Umiamako Isbrae and Hagen Brae, confirming complex spatial variability in interior response to oceanic and atmospheric forcing. Furthermore, whilst prior work suggested that South West Greenland’s land-terminating sector experienced persistent interior speed-up between 2009 and 2012 (Doyle et al., 2014), our results reveal a >10% multi-decadal slowdown within the same sector, suggesting this region is resilient to recent increases in surface melt forcing.</p>


1990 ◽  
Vol 14 ◽  
pp. 307-310 ◽  
Author(s):  
C.R. Warren ◽  
N.R.J. Hulton

The retreat of the West Greenland ice sheet from its Sisimiut (Wisconsinan) glacial maximum, was punctuated by a series of Stillstands or small readvances that formed numerous moraines. These landforms have been interpreted in the past as the result of short-term, regional falls in ablation-season temperatures. However, mapping of the geomorphological evidence south of Ilulissat (Jakobshavn) suggests that retreat behaviour was not primarily governed by climate, and therefore that the former ice margins are not palaeoclimatically significant. During warm climate ice-sheet wastage, the successive quasi-stable positions adopted by the ice margin were largely governed by topography. The retreat of the inherently unstable calving glaciers was arrested only at topographically-determined locations where stability could be achieved.


Author(s):  
Robert S. Fausto ◽  
Dirk Van As ◽  
Jens A. Antoft ◽  
Jason E. Box ◽  
William Colgan

The Greenland ice sheet is an excellent observatory for global climate change. Meltwater from the 1.8 million km2 large ice sheet infl uences oceanic temperature and salinity, nutrient fl uxes and global sea level (IPCC 2013). Surface refl ectivity is a key driver of surface melt rates (Box et al. 2012). Mapping of diff erent ice-sheet surface types provides a clear indicator of where changes in ice-sheet surface refl ectivity are most prominent. Here, we present an updated version of a surface classifi cation algorithm that utilises NASA’s Moderateresolution Imaging Spectroradiometer (MODIS) sensor on the Terra satellite to systematically monitor ice-sheet surface melt (Fausto et al. 2007). Our aim is to determine the areal extent of three surface types over the 2000–2014 period: glacier ice, melting snow (including percolation areas) and dry snow (Cuff ey & Paterson 2010). Monthly 1 km2 resolution surface-type grids can be downloaded via the CryoClim internet portal (www.cryoclim.net). In this report, we briefl y describe the updated classifi cation algorithm, validation of surface types and inter-annual variability in surface types.


2015 ◽  
Vol 9 (2) ◽  
pp. 2563-2596
Author(s):  
T. Goelles ◽  
C. E. Bøggild ◽  
R. Greve

Abstract. Albedo is the dominating factor governing surface melt variability in the ablation area of ice sheets and glaciers. Aerosols such as mineral dust and black carbon (soot) accumulate on the ice surface and cause a darker surface and therefore a lower albedo. The dominant source of these aerosols in the ablation area is melt-out of englacial material which has been transported via ice flow. The darkening effect on the ice surface is currently not included in sea level projections, and the effect is unknown. We present a model framework which includes ice dynamics, aerosol transport, aerosol accumulation and the darkening effect on ice albedo and its consequences for surface melt. The model is applied to a simplified geometry resembling the conditions of the Greenland ice sheet, and it is forced by several temperature scenarios to quantify the darkening effect of aerosols on future mass loss. The effect of aerosols depends non-linearly on the temperature rise due to the feedback between aerosol accumulation and surface melt. The effect of aerosols in the year 3000 is up to 12% of additional ice sheet volume loss in the warmest scenario.


2019 ◽  
Author(s):  
Joseph M. Cook ◽  
Andrew J. Tedstone ◽  
Christopher Williamson ◽  
Jenine McCutcheon ◽  
Andrew J. Hodson ◽  
...  

Abstract. Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface that increase solar radiation absorption. This biological albedo reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a novel radiative transfer model, supervised classification of UAV and satellite remote sensing data and runoff modelling to calculate biologically-driven ice surface ablation and compare it to the albedo reducing effects of local mineral dust. We demonstrate that algal growth led to an additional 5.5–8.0 Gt of runoff from the western sector of the GrIS in summer 2016, representing 6–9 % of the total. Our analysis confirms the importance of the biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland’s future sea level contribution, especially because both the bare ice zones available for algal colonization and the length of the active growth season are set to expand in the future.


1979 ◽  
Vol 23 (89) ◽  
pp. 193-207 ◽  
Author(s):  
Susan Herron ◽  
Hoar ◽  
Chester C. Langway

AbstractThe Camp Century, Greenland, ice core was recovered from a bore hole which extended 1 375 m from the surface of the Greenland ice sheet to the ice/sub-ice interface. The bottom 15.7 m of the core contain over 300 alternating bands of clear and debris-laden ice. The size of the included debris ranges from particles less than 2 μm in diameter to particle aggregates which are a maximum of 3 cm in diameter: the average debris concentration is 0.24ºº by weight. The debris size, concentration, and composition indicate that the debris originates from the till-like material directly below the debris-laden ice. The total gas concentration averages 51 ml/kg ice compared to the average of 101 ml/kg ice for the top 1 340 m. The gas composition of debris-bearing ice has apparently been modified by the oxidation of methane as reflected by traces of methane, high CO2 levels, and low O2 levels with respect to atmospheric air. Argon, which is not affected by the oxidation, shows an enrichment in samples with lower gas concentrations. Both the low gas concentrations in the debris-laden zone and the argon enrichment may be explained by the downward diffusion of gases from bubbly glacier ice into an originally bubble-free zone of refrozen debris-laden ice. Ice texture and ice-fabric analyses reveal extremely fine-grained ice and highly preferred crystal orientation in the lowermost 10 m of the core, indicating a zone of high deformation.


1993 ◽  
Vol 159 ◽  
pp. 109-114
Author(s):  
R.J Braithwaite

Firn temperatures and meltwater refreezing are studied in the lower accumulation area of the Greenland ice sheet as part of an international project on sea level changes. In the study area, 1440–1620 m a.s.l., meltwater penetrates several metres into the firn and refreezes, warming the firn by 5–7°C compared with annual air temperatures. This firn warming is closely related to surface melt which can be estimated by several methods. A relatively high degree-day factor is needed to account for the melt rates found.


Sign in / Sign up

Export Citation Format

Share Document