Development of a Geochemical Model to Predict Surface Water Discharge Compositions in Northern Saskatchewan: Applications of PHREEQC and PhreePlot to Identify Active Geochemical Processes

Author(s):  
John Mahoney ◽  
Ryan Frey ◽  
Valerie Plagnes ◽  
Brett Mitchell ◽  
John Rowson
1995 ◽  
Vol 31 (8) ◽  
pp. 141-145 ◽  
Author(s):  
A. H. W. Beusen ◽  
O. Klepper ◽  
C. R. Meinardi

A model is described that aims at predicting surface water quality from N- and P-inputs on a European scale. The model combines a GIS-based approach to estimate loads, geohydrological data to define model structure and statistical techniques to estimate parameter values. The model starts with an inventory of sources of N and P: agriculture, wastewater and (for N) atmospheric deposition. Nitrogen flows are assumed to follow both surface- and groundwater flows, while for phosphorus only surface water flow is taken into account. A calibration of loss terms of N and P (assumed to be constants for the whole of Europe) by comparing total inputs to measured loads shows good agreement between observations and calculated river discharges. For the coastal seas of Europe concentrations are calculated by assuming conservative behaviour of N and P. Freshwater quality problems occur in western Europe with its intensive agriculture and high population density and locally in southern Europe where dilution is low due to low water discharge. In the marine environment the main problem areas are the Baltic and Black seas, with much lower impacts in the North and Adriatic Sea; in other coastal waters human impacts are essentially negligible.


2020 ◽  
Vol 42 (11) ◽  
pp. 3911-3924 ◽  
Author(s):  
Lenka Mbadugha ◽  
Duncan Cowper ◽  
Sapar Dossanov ◽  
Graeme I. Paton

Abstract Mining activities are acknowledged to introduce contaminants into localised environments and cause wider spread diffuse pollution. The concentration, distribution and fate of arsenic (As) and antimony (Sb) were studied at the former metalliferous Louisa Mine at Glendinning, Scotland. Soils and surface water were sampled and subsequently analysed to map the distribution of contamination and identify pollution sources. The maximum concentrations of As and Sb of 15,490 and 1504.2 mg kg−1, respectively, were determined in soils associated with the ore processing area and spoil heaps. The fractions of dissolved As and Sb in soils were < 1 and < 5% of total soil content, respectively, confirming findings of previous studies that As and Sb are relatively immobile. Yet, the concentrations of As and Sb released by soils exceeded regulatory limits. Concentrations of As and Sb in surface water in the immediate vicinity of the mine were impacted by a gully discharge, but rapidly diluted. While the concentrations affected by the run-off waters did not exceed EU environmental standards for freshwater, the concentrations of both, As and Sb, sharply increased above the said environmental standards approximately 100 m downstream of the mine site. The unaltered As-to-Sb ratio in water samples suggests a geogenic source. While there is a justifiable concern about the soil pollution caused by the historic mining in the area, the Glenshanna Burn is affected more by indigenous geochemical processes than the derelict mine.


Author(s):  
Shirley E. Clark ◽  
Katherine H. Baker ◽  
Melinda M. Lalor ◽  
J. Bradley Mikula ◽  
Catherine S. Burkhardt

Water SA ◽  
2021 ◽  
Vol 47 (2 April) ◽  
Author(s):  
T Strydom ◽  
JM Nel ◽  
M Nel ◽  
RM Petersen ◽  
CL Ramjukadh

Environmental isotopes have been used for decades as natural tracers in studies aimed at understanding complex hydrogeological processes such as groundwater and surface water interactions. Radon (Rn222) is a naturally occurring, radioactive isotope which is produced from radium (Ra226) during the radioactive decay series of uranium (U238). Since U238 is present in most geological substrates, Rn222 is produced in various lithological structures and subsequently transported with groundwater through fractures and pore spaces in an aquifer towards surface water discharge points in rivers and springs. This study aimed to determine (i) the concentration of Rn222 within both surface water and groundwater in Table Mountain Group (TMG) aquifer systems, and (ii) the feasibility of using Rn222 isotopes as a natural tracer in groundwater-surface water interaction studies. This study was conducted in a highly fractured TMG aquifer system near Rawsonville, South Africa. Surface water from two perennial rivers (i.e. Gevonden and Molenaars), together with groundwater from a nearby borehole, were sampled and their corresponding Rn222 concentrations measured. Our study found median Rn222 concentrations in the Gevonden River of 76.4 Bq∙L-1 and 67.2 Bq∙L-1 in the dry and wet seasons, respectively. Nearly 12% of surface water samples exceeded 100 Bq∙L-1.  These abnormally high Rn222 concentrations can only be attributed to the influx of groundwater with extremely high Rn222 concentrations. Under ambient (no pumping) conditions, Rn222 concentrations in groundwater range between 130–270 Bq∙L-1. However, when the borehole was pumped, and inflowing water from the surrounding aquifer was sampled, even higher Rn222 concentrations (391–593 Bq∙L-1) were measured. These extremely high Rn222 concentrations in groundwater are believed to be attributed to the underlying granitic geology and the prevalence of faults. The use of Rn222 isotopes as an environmental tracer in groundwater–surface water interaction studies is therefore regarded as a feasible option in similar highly fractured aquifer systems.


Sign in / Sign up

Export Citation Format

Share Document