scholarly journals Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter

2009 ◽  
Vol 59 (2) ◽  
pp. 351-370 ◽  
Author(s):  
Abdul M. Al-Raei ◽  
Katja Bosselmann ◽  
Michael E. Böttcher ◽  
Britta Hespenheide ◽  
Franz Tauber
2015 ◽  
Vol 63 (4) ◽  
pp. 501-510 ◽  
Author(s):  
Heyde Gonçalves Gomes ◽  
Silvia Keiko Kawakami ◽  
Satie Taniguchi ◽  
Pedro Walfir Souza Filho ◽  
Rosalinda Carmela Montone

Abstract Amazonian aquatic systems are usually associated with pristine waters, however, irregular urban occupation of the hydrographic basins and sewerage deficiencies may lead to point and diffuse contamination. Sewage contamination in intertidal surface sediments from the Guajará Estuary, Brazilian Amazon coast, was evaluated using a set of steroids as biomarkers. Sediments collected along the urbanized margin were also analyzed for chlorophyll a, total organic carbon and grain sizes. Coprostanol, the main fecal sterol, was found at concentrations varying from 0.06 to 7.93 µg g-1 dry sediment, following the sequence Tucunduba > Ver-o-Peso > Porto da Palha > Tamandaré > Icoaraci > Miramar. Mixed sources of organic matter and coastal process probably concurred to produce weak correlations among the parameters. Plant derived sterols, including n-C30 alcohol and β-amyrinyl alkanoates, were clearly abundant, but they did not preclude the use of other steroid signals to the assessment of sewage contamination. High values of the steroid indexes involving 5α and 5β stanols and stanones highlighted sewage contamination at the sites with the lowest absolute coprostanol concentrations. The predominance of 5β stanols indicated a chronically sewage contamination of the area.


2021 ◽  
pp. 129-152
Author(s):  
David Rickard

Organic matter is intrinsically related to framboids since the sulfide in sedimentary pyrite is almost wholly the result of microbial sulfate reduction by mainly heterotrophic microorganisms. However, framboids do not represent fossil bacteria. The organic matter extracted from framboids tends to take on the form of the pyrite, rather than vice versa. The exact nature of this organic material is unknown. However, it appears that microbial biofilm may be an important contributor. Likewise, the organic residues from some framboids often appear similar to sulfur-rich organic geopolymers such as protokerogen. Most of the organic matter in framboids appears to be syngenetic with the framboids, and some framboids seem to have grown in organic substrates.


2011 ◽  
Vol 44 (6) ◽  
pp. 759-771 ◽  
Author(s):  
Dong-Woon Hwang ◽  
Sung-Eun Park ◽  
Pyoung-Jung Kim ◽  
Byoung-Seol Koh ◽  
Hee-Gu Choi

2013 ◽  
Vol 10 (4) ◽  
pp. 285 ◽  
Author(s):  
Raoul-Marie Couture ◽  
Dirk Wallschläger ◽  
Jérôme Rose ◽  
Philippe Van Cappellen

Environmental context The use of water contaminated with arsenic for drinking and irrigation is linked to water and food borne diseases throughout the world. Although reducing conditions in soils and sediments are generally viewed as enhancing arsenic mobility in subsurface environments, we show they can actually promote As sequestration in the presence of reduced sulfur species and labile organic matter. We propose that sulfurisation of organic matter and subsequent binding of As to thiol groups may offer an innovative pathway for As remediation. Abstract Flow-through reactors (FTRs) were used to assess the mobility of arsenic under sulfate reducing conditions in natural, undisturbed lake sediments. The sediment slices in the FTRs were supplied continuously with inflow solutions containing sulfate and soluble AsIII or AsV and, after 3 weeks, also lactate. The experiment ran for a total of 8 weeks. The dissolved iron concentration, pH, redox potential (Eh), as well as aqueous As and sulfur speciation were monitored in the outflow solutions. In FTRs containing surface sediment enriched in labile organic matter (OM), microbial sulfate reduction led to an accumulation of organically bound S, as evidenced by X-ray absorption spectroscopy. For these FTRs, the inflowing dissolved As concentration of 20μM was lowered by two orders of magnitude, producing outflow concentrations of 0.2μM monothioarsenate and 0.1μM arsenite. In FTRs containing sediment collected at greater depth, sulfide and zero-valent S precipitated as pyrite and elemental S, while steady-state outflow arsenite concentrations remained near 5μM. The observations thus suggest that As sequestration is enhanced when sediment OM buffers the free sulfide and zero-valent S concentrations. An updated conceptual model for the fate of As in the anoxic As–C–S–Fe system is presented based on the results of this study.


2016 ◽  
Author(s):  
Ben R. Haller ◽  
◽  
Janet M. Paper ◽  
Michael Vega ◽  
Saugata Datta ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


2017 ◽  
Vol 68 (9) ◽  
pp. 1704 ◽  
Author(s):  
Leandro Bergamino ◽  
Mark Schuerch ◽  
Adriana Tudurí ◽  
Silvina Carretero ◽  
Felipe García-Rodríguez

We investigated carbon isotopic ratios (δ13C) v. carbon to nitrogen (C : N) ratios for surface sediments throughout a large estuarine system (Río de la Plata, RdlP), combined with sediment cores from adjacent marshes to infer main carbon sources. We also evaluated the influence of the El Niño–Southern Oscillation (ENSO) and associated high freshwater-discharge events on the organic-matter transport within the estuary. The isotopic pattern in surface sediments of the RdlP showed the upper reaches to be influenced by riverine particulate matter (δ13C range: –24 to –26‰). Similarly, in the sediment cores from marshes of the upper reaches, δ13C values decreased from –24‰ in ancient sediments to –28‰ in recent sediments, reflecting an increased contribution of organic matter from land, including C3 plants and freshwater phytoplankton, during the past 50 years. However, the lower reaches represent a depositional environment of marine algae (δ13C range: –21 to –23‰), with no influence of detritus from adjacent marshes, indicating minor erosion of the marshes in the lower reaches operating as carbon-sink habitats. Our isotopic analysis showed that the transport and deposition of terrigenous organic matter within the RdlP and adjacent marsh habitat appear to be both temporally and spatially linked to hydrology patterns.


2019 ◽  
Vol 100 ◽  
pp. 434-446 ◽  
Author(s):  
Heng Zhao ◽  
Wenhui Liu ◽  
Tenger Borjigin ◽  
Jianyong Zhang ◽  
Houyong Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document