Backtracking drifting objects using surface currents from high-frequency (HF) radar technology

2012 ◽  
Vol 62 (7) ◽  
pp. 1073-1089 ◽  
Author(s):  
Ana Julia Abascal ◽  
Sonia Castanedo ◽  
Vicente Fernández ◽  
Raúl Medina
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Ren ◽  
Stephen Nash ◽  
Michael Hartnett

This paper details work in assessing the capability of a hydrodynamic model to forecast surface currents and in applying data assimilation techniques to improve model forecasts. A three-dimensional model Environment Fluid Dynamics Code (EFDC) was forced with tidal boundary data and onshore wind data, and so forth. Surface current data from a high-frequency (HF) radar system in Galway Bay were used for model intercomparisons and as a source for data assimilation. The impact of bottom roughness was also investigated. Having developed a “good” water circulation model the authors sought to improve its forecasting ability through correcting wind shear stress boundary conditions. The differences in surface velocity components between HF radar measurements and model output were calculated and used to correct surface shear stresses. Moreover, data assimilation cycle lengths were examined to extend the improvements of surface current’s patterns during forecasting period, especially for north-south velocity component. The influence of data assimilation in model forecasting was assessed using a Data Assimilation Skill Score (DASS). Positive magnitude of DASS indicated that both velocity components were considerably improved during forecasting period. Additionally, the improvements of RMSE for vector direction over domain were significant compared with the “free run.”


Author(s):  
A. Chaudhary ◽  
N. Agarwal ◽  
R. Sharma

The present study explores the possibility of deriving the across track currents along the Indian coastal region from SARAL/AltiKa mission. The across track surface geostrophic currents obtained from along track SARAL altimeter data are directly compared (qualitatively) with high frequency (HF) radar observations of surface currents in the Bay of Bengal. The velocity component from HF radar which is perpendicular to the altimeter tracks is considered. Since the ageostrophic velocity contribution is ignored for the moment, the surface geostrophic currents SARAL compare well only under low wind conditions. Due to high along track resolution of SARAL there are large variations in velocity which are not captured by the HF radar observations. In general, the magnitude and variations in surface currents derived from SARAL altimeter are comparable with HF radar observations.


Ocean Science ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. 755-768
Author(s):  
Lohitzune Solabarrieta ◽  
Ismael Hernández-Carrasco ◽  
Anna Rubio ◽  
Michael Campbell ◽  
Ganix Esnaola ◽  
...  

Abstract. The use of high-frequency radar (HFR) data is increasing worldwide for different applications in the field of operational oceanography and data assimilation, as it provides real-time coastal surface currents at high temporal and spatial resolution. In this work, a Lagrangian-based, empirical, real-time, short-term prediction (L-STP) system is presented in order to provide short-term forecasts of up to 48 h of ocean currents. The method is based on finding historical analogs of Lagrangian trajectories obtained from HFR surface currents. Then, assuming that the present state will follow the same temporal evolution as the historical analog, we perform the forecast. The method is applied to two HFR systems covering two areas with different dynamical characteristics: the southeast Bay of Biscay and the central Red Sea. A comparison of the L-STP methodology with predictions based on persistence and reference fields is performed in order to quantify the error introduced by this approach. Furthermore, a sensitivity analysis has been conducted to determine the limit of applicability of the methodology regarding the temporal horizon of Lagrangian prediction. A real-time skill score has been developed using the results of this analysis, which allows for the identification of periods when the short-term prediction performance is more likely to be low, and persistence can be used as a better predictor for the future currents.


2020 ◽  
Vol 12 (18) ◽  
pp. 3074
Author(s):  
Lyuba Novi ◽  
Francesco Raffa ◽  
Francesco Serafino

Two different ground-based remote sensing instruments can be used for the near-real-time monitoring of surface waves and currents, namely the high frequency HF radar and the microwave X-band radar. The HF system reaches larger offshore distances at lower spatial resolutions and provides a poorer measurement of the wave-induced currents in very shallow waters. On the other hand, the X-band system achieves significantly higher spatial resolutions with a smaller offshore coverage. This study provides a preliminary comparison of the measured surface currents, obtained by the two different tools where they overlap. The comparison showed a good agreement between the measures with some discrepancies ascribable to the difference in the characteristics of the two radar technologies.


2018 ◽  
Vol 10 (10) ◽  
pp. 1633 ◽  
Author(s):  
Steven Morey ◽  
Nicolas Wienders ◽  
Dmitry Dukhovskoy ◽  
Mark Bourassa

Concurrent measurements by satellite tracked drifters of different hull and drogue configurations and coastal high-frequency radar reveal substantial differences in estimates of the near-surface velocity. These measurements are important for understanding and predicting material transport on the ocean surface as well as the vertical structure of the near-surface currents. These near-surface current observations were obtained during a field experiment in the northern Gulf of Mexico intended to test a new ultra-thin drifter design. During the experiment, thirty small cylindrical drifters with 5 cm height, twenty-eight similar drifters with 10 cm hull height, and fourteen drifters with 91 cm tall drogues centered at 100 cm depth were deployed within the footprint of coastal High-Frequency (HF) radar. Comparison of collocated velocity measurements reveals systematic differences in surface velocity estimates obtained from the different measurement techniques, as well as provides information on properties of the drifter behavior and near-surface shear. Results show that the HF radar velocity estimates had magnitudes significantly lower than the 5 cm and 10 cm drifter velocity of approximately 45% and 35%, respectively. The HF radar velocity magnitudes were similar to the drogued drifter velocity. Analysis of wave directional spectra measurements reveals that surface Stokes drift accounts for much of the velocity difference between the drogued drifters and the thin surface drifters except during times of wave breaking.


2021 ◽  
Vol 71 (3) ◽  
pp. 293-308
Author(s):  
Alexander Barth ◽  
Charles Troupin ◽  
Emma Reyes ◽  
Aida Alvera-Azcárate ◽  
Jean-Marie Beckers ◽  
...  

AbstractDIVAnd (Data-Interpolating Variational Analysis, in n-dimensions) is a tool to interpolate observations on a regular grid using the variational inverse method. We have extended DIVAnd to include additional dynamic constraints relevant to surface currents, including imposing a zero normal velocity at the coastline, imposing a low horizontal divergence of the surface currents, temporal coherence and simplified dynamics based on the Coriolis force, and the possibility of including a surface pressure gradient. The impact of these constraints is evaluated by cross-validation using the HF (high-frequency) radar surface current observations in the Ibiza Channel from the Balearic Islands Coastal Ocean Observing and Forecasting System (SOCIB). A small fraction of the radial current observations are set aside to validate the velocity reconstruction. The remaining radial currents from the two radar sites are combined to derive total surface currents using DIVAnd and then compared to the cross-validation dataset and to drifter observations. The benefit of the dynamic constraints is shown relative to a variational interpolation without these dynamical constraints. The best results were obtained using the Coriolis force and the surface pressure gradient as a constraint which are able to improve the reconstruction from the Open-boundary Modal Analysis, a quite commonly used method to interpolate HF radar observations, once multiple time instances are considered together.


Author(s):  
A. J. Abascal ◽  
S. Castanedo ◽  
V. Fernandez ◽  
M. I. Ferrer ◽  
R. Medina

2020 ◽  
Vol 70 (12) ◽  
pp. 1485-1503
Author(s):  
Dylan Dumas ◽  
Anthony Gramoullé ◽  
Charles-Antoine Guérin ◽  
Anne Molcard ◽  
Yann Ourmières ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document