Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities

2016 ◽  
Vol 129 (4) ◽  
pp. 675-684 ◽  
Author(s):  
Ryota Aoyagi ◽  
Kanehiro Kitayama
1990 ◽  
Vol 6 (4) ◽  
pp. 387-408 ◽  
Author(s):  
Steven H. Rogstad

ABSTRACTOne component of the high organismal diversity of tropical lowland rain forests is the existence of series of closely related, sympatric species. For example, the six distinct tree species of the monophyletic Polyalthia hypoleuca complex regularly grow sympatrically in various combinations throughout the rain forests of Malesia. Theoretical and empirical evidence has been presented indicating that the members of such series either (1) are well differentiated with respect to at least one major niche component; or (2) may lack differentiated niches. In this study, certain sympatric members of the complex are shown to have clearly diverged in autecological characteristics that affect their distribution including: (1) P. glauca, P. hypoleuca, and P. sumatrana differ in growth characteristics, height at maturity, seedling germination requirements, and are found on soils with differing degrees of hydration; (2) P. discolor grows to a different height and on different substrate types than does P. multinervis; and (3) P. glauca and P. hypoleuca seedlings differ in transpiration characteristics and response to flooding and drought.


2015 ◽  
Vol 31 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Ryota Aoyagi ◽  
Kanehiro Kitayama

Abstract:In this study, we tested the hypothesis that functional traits associated with nutrient impoverishment contribute to enhancing shade-tolerance (survival at low light) for the juveniles of canopy tree species in Bornean rain forests. To test the hypothesis, survival and functional traits (biomass allocation, leaf dynamics and foliar nutrient concentration) were investigated as a function of light conditions for saplings of 13 species in three forests with different levels of nutrient availability. As predicted by the hypothesis, the species in the severely nutrient-poor site (a tropical heath forest on nutrient-poor soils) showed greater shade-tolerance (>91% survival for 8 mo at 5% global site factor) than in the other two sites (mixed dipterocarp forests) (54–87% survival). Across the species, greater shade-tolerance was associated with a higher biomass allocation to roots, a slower leaf production and a higher foliar C concentration, which are considered as C-conservation traits under nutrient impoverishment. These results suggest that the juveniles of the canopy species occurring on nutrient-poor soils can enhance shade-tolerance by the same mechanisms as the adaptation to nutrient impoverishments. Tree species in nutrient-poor environments may be selected for surviving also in shaded conditions.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 394 ◽  
Author(s):  
Jian-Feng Liu ◽  
Ze-Ping Jiang ◽  
Marcus Schaub ◽  
Arthur Gessler ◽  
Yan-Yan Ni ◽  
...  

Most of our knowledge about forest responses to global environmental changes is based on experiments with seedlings/saplings grown in artificially controlled conditions. We do not know whether this knowledge will allow us to upscale to larger and mature trees growing in situ. In the present study, we used elevation as a proxy of various environmental factors, to examine whether there are ontogenetic differences in carbon and nutrient allocation of two major treeline species (Pinus cembra L. and Larix decidua Mill.) along elevational gradients (i.e., environmental gradient) in the Swiss alpine treeline ecotone (~300 m interval). Young and adult trees grown at the same elevation had similar levels of non-structural carbohydrates (NSCs), total nitrogen (TN), and phosphorus (TP), except for August leaf sugars and August leaf TP in P. cembra at the treeline. We did not detect any interaction between tree age and elevation on tissue concentration of NSCs, TN, and TP across leaf, shoot, and root tissues for both species, indicating that saplings and mature trees did not differ in their carbon and nutrient responses to elevation (i.e., no ontogenetic differences). With respect to carbon and nutrient allocation strategies, our results show that young and adult trees of both deciduous and evergreen tree species respond similarly to environmental changes, suggesting that knowledge gained from controlled experiments with saplings can be upscaled to adult trees, at least if the light is not limited. This finding advances our understanding of plants’ adaptation strategies and has considerable implications for future model-developments.


2019 ◽  
Vol 24 (6) ◽  
pp. 335-340
Author(s):  
Nobuo Imai ◽  
John Baptist Sugau ◽  
Joan T. Pereira ◽  
Jupiri Titin ◽  
Kanehiro Kitayama

2013 ◽  
Vol 29 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Ana María Benavides ◽  
Jan H. D. Wolf ◽  
Joost F. Duivenvoorden

Abstract:The contribution of vegetative recruitment by non-tree species to the regeneration of tropical forests in man-made clearings or tree-fall gaps tends to be ignored. In a series of field studies near Amacayacu, Colombian Amazonia, we tested if hemiepiphytic aroids quickly colonize such open habitats through seed dispersal, sprouting plant fragments, or lateral invasion of flagellar aroids from the closed forest nearby. A seed germination experiment applying two soil substrates and three shade levels showed that abundant light reduced the germination success of three Philodendron species. A total of 400 cuttings from five Philodendron species were placed in forest clearings and almost 12% of these sprouted within 14 wk. Monitoring more than 2000 aroid plants over 14 mo in different habitats showed that recruitment was low (0.3 plants per 10 m2) compared with initial densities (3.1 plants per 10 m2). Flagellar aroids grew about 2.5 times faster than non-flagellar aroids. In forest edges they reached a mean apical growth of 98 cm in 14 mo. However, non-flagellar aroids were five to six times more abundant than flagellar individuals everywhere. It was concluded that hemiepiphytic aroids colonize open habitats mostly through a post-disturbance survival of plants or plant fragments.


Sign in / Sign up

Export Citation Format

Share Document