scholarly journals Low-cost, high-precision, single-frequency GPS–BDS RTK positioning

GPS Solutions ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 1315-1330 ◽  
Author(s):  
Robert Odolinski ◽  
Peter J. G. Teunissen
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2856
Author(s):  
Junping Zou ◽  
Ahao Wang ◽  
Jiexian Wang

High-precision and low-cost single-frequency precise point positioning (SF-PPP) has been attracting more and more attention in numerous global navigation satellite system (GNSS) applications. To provide the precise ionosphere delay and improve the positioning accuracy of the SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB) for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which was processed, and the corresponding results were analyzed. The results of the dual-frequency observations enhanced SF-PPP realize centimeter-level positioning. The difference between the results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared with the relative positioning results computed with the DD algorithm. Experimental results showed that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity resolutions on the positioning accuracy. The data was processed with the proposed method for the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could further improve the deformation monitoring ability of SF-PPP.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3254 ◽  
Author(s):  
Jungbeom Kim ◽  
Minhuck Park ◽  
Yonghwan Bae ◽  
O-Jong Kim ◽  
Donguk Kim ◽  
...  

In this study, we developed a low-cost, high-precision vehicle navigation system for deep urban multipath environments using time-differenced carrier phase (TDCP) measurements. Although many studies are being conducted to navigate autonomous vehicles using the global positioning system (GPS), it is difficult to obtain accurate navigation solutions due to multipath errors in urban environments. Low-cost GPS receivers that determine the solution based on pseudorange measurements are vulnerable to multipath errors. We used carrier phase measurements that are more robust for multipath errors. Without correction information from reference stations, the limited information of a low-cost, single-frequency receiver makes it difficult to quickly and accurately determine integer ambiguity of carrier phase measurements. We used TDCP measurements to eliminate the need to determine integer ambiguity that is time-invariant and we combined TDCP-based GPS with an inertial navigation system to overcome deep urban multipath environments. Furthermore, we considered a cycle slip algorithm for its accuracy and a multi-constellation navigation system for its availability. The results of dynamic field tests in a deep urban area indicated that it could achieve horizontal accuracy of at the submeter level.


2020 ◽  
Vol 14 (2) ◽  
pp. 167-175
Author(s):  
Li Zhang ◽  
Volker Schwieger

AbstractThe investigations on low-cost single frequency GNSS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox GNSS receivers combined with low-cost antennas and self-constructed L1-optimized choke rings can reach an accuracy which almost meets the requirements of geodetic applications (see Zhang and Schwieger [25]). However, the quality (accuracy and reliability) of low-cost GNSS receiver data should still be improved, particularly in environments with obstructions. The multipath effects are a major error source for the short baselines. The ground plate or the choke ring ground plane can reduce the multipath signals from the horizontal reflector (e. g. ground). However, the shieldings cannot reduce the multipath signals from the vertical reflectors (e. g. walls).Because multipath effects are spatially and temporally correlated, an algorithm is developed for reducing the multipath effect by considering the spatial correlations of the adjoined stations (see Zhang and Schwieger [24]). In this paper, an algorithm based on the temporal correlations will be introduced. The developed algorithm is based on the periodic behavior of the estimated coordinates and not on carrier phase raw data, which is easy to use. Because, for the users, coordinates are more accessible than the raw data. The multipath effect can cause periodic oscillations but the periods change over time. Besides this, the multipath effect’s influence on the coordinates is a mixture of different multipath signals from different satellites and different reflectors. These two properties will be used to reduce the multipath effect. The algorithm runs in two steps and iteratively. Test measurements were carried out in a multipath intensive environment; the accuracies of the measurements are improved by about 50 % and the results can be delivered in near-real-time (in ca. 30 minutes), therefore the algorithm is suitable for structural health monitoring applications.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


Sign in / Sign up

Export Citation Format

Share Document