Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters

2013 ◽  
Vol 41 (2) ◽  
pp. 233-250 ◽  
Author(s):  
Haruo Ikeda ◽  
Kazuo Shin-ya ◽  
Satoshi Omura
2016 ◽  
Vol 82 (19) ◽  
pp. 5795-5805 ◽  
Author(s):  
Min Xu ◽  
Yemin Wang ◽  
Zhilong Zhao ◽  
Guixi Gao ◽  
Sheng-Xiong Huang ◽  
...  

ABSTRACTGenome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries inStreptomycesspp. We demonstrate mining from a strain ofStreptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate hostStreptomyces lividansSBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic fromS. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways.IMPORTANCEMicrobial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites fromStreptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic fromStreptomyces rocheiSal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery.


Author(s):  
Xiyan Wang ◽  
Thomas Isbrandt ◽  
Emil Ørsted Christensen ◽  
Jette Melchiorsen ◽  
Thomas Ostenfeld Larsen ◽  
...  

Pigmented Pseudoalteromonas strains are renowned for their production of secondary metabolites, and genome mining has revealed a high number of biosynthetic gene clusters (BGCs) for which the chemistry is unknown. Identification of those BGCs is a prerequisite for linking products to gene clusters and for further exploitation through heterologous expression.


2020 ◽  
Author(s):  
Tetiana Gren ◽  
Christopher M. Whitford ◽  
Omkar S. Mohite ◽  
Tue S. Jørgensen ◽  
Eftychia E. Kontou ◽  
...  

AbstractStreptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Using CRISPR-BEST technology, core genes of 4 biosynthetic gene clusters (BGCs) that are situated on the chromosome arms were inactivated and the outcomes of the inactivations were tested. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5,19% genome reduction. Sequencing confirmed that DEL2 does not bear any crucial off-target effects or rearrangements in its genome. It can be characterized by faster growth and inability to produce three main native metabolites of S. griseofuscus: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to confirm the production of actinorhodin by both S. griseofuscus wild type and DEL2. We believe that this strain will serve as a good chassis for heterologous expression of BGCs.ImportanceThe rise of antibacterial resistance calls on the development of the next generation of antibiotics, majority of which are derived from natural compounds, produced by actinomycetes. The manipulation, refactoring and expression of BGCs coding for such natural products is a promising approach in secondary metabolite discovery. Thus, the development of a versatile panel of heterologous hosts for the expression of BGCs is essential. We believe that first-to-date systematic, detailed characterisation of S. griseofuscus, a highly promising chassis strain, will not only facilitate the further development of this particular strain, but also will set a blueprint for characterisation of other potential hosts.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Author(s):  
Subhasish Saha ◽  
Germana Esposito ◽  
Petra Urajova ◽  
Jan Mareš ◽  
Daniela Ewe ◽  
...  

Heterocytous cyanobacteria are among the most prolific source of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest, as black mat was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bionformatic analyses. Herein, we report the nearly complete genome consisting 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophane-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2) and anabaenopeptin 816 (3). Further, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b) was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 494
Author(s):  
Lena Mitousis ◽  
Yvonne Thoma ◽  
Ewa M. Musiol-Kroll

The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the “actinomycetes era”, in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015–2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.


2020 ◽  
Vol 9 (42) ◽  
Author(s):  
Alex J. Mullins ◽  
Cerith Jones ◽  
Matthew J. Bull ◽  
Gordon Webster ◽  
Julian Parkhill ◽  
...  

ABSTRACT The genomes of 450 members of Burkholderiaceae, isolated from clinical and environmental sources, were sequenced and assembled as a resource for genome mining. Genomic analysis of the collection has enabled the identification of multiple metabolites and their biosynthetic gene clusters, including the antibiotics gladiolin, icosalide A, enacyloxin, and cepacin A.


Sign in / Sign up

Export Citation Format

Share Document