First report of barley blast caused by Magnaporthe oryzae pathotype Triticum (MoT) in Bangladesh

2021 ◽  
Vol 87 (3) ◽  
pp. 184-191
Author(s):  
Krishna Kanta Roy ◽  
Md Mostofa Ali Reza ◽  
Md Muzahid-E-Rahman ◽  
Kishowar E. Mustarin ◽  
Paritosh Kumar Malaker ◽  
...  
Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1228-1228 ◽  
Author(s):  
M. P. You ◽  
V. Lanoiselet ◽  
C. P. Wang ◽  
R. G. Shivas ◽  
Y. P. Li ◽  
...  

Commercial rice crops (Oryza sativa L.) have been recently reintroduced to the Ord River Irrigation Area in northern Western Australia. In early August 2011, unusual leaf spot symptoms were observed by a local rice grower on rice cultivar Quest. A leaf spot symptom initially appeared as grey-green and/or water soaked with a darker green border and then expanded rapidly to several centimeters in length and became light tan in color with a distinct necrotic border. Isolations from typical leaf lesions were made onto water agar, subcultured onto potato dextrose agar, and maintained at 20°C. A representative culture was lodged in the Western Australian Culture Collection Herbarium, Department of Agriculture and Food Western Australia (WAC 13466) and as a herbarium specimen in the Plant Pathology Herbarium, Plant Biosecurity Science (BRIP 54721). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene were carried out with universal primers ITS1 and ITS4 (4). The PCR products were sequenced and BLAST analyses used to compare sequences with those in GenBank. The sequence had 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae B.C. Couch, the causal agent of rice blast, the most important fungal disease of rice worldwide (1). Additional sequencing with the primers Bt1a/Bt1b for the β-tubulin gene, primers ACT-512F/ACT-783R for the actin gene, and primers CAL-228F/CAL-737R for the calmodulin gene showed 100% identity in each case with M. oryzae sequences in GenBank, confirming molecular similarity with other reports, e.g., (1). The relevant sequence information for a representative isolate has been lodged in GenBank (GenBank Accession Nos. JQ911754 for (ITS) 1 and 2; JX014265 for β-tubulin; JX035809 for actin; and JX035808 for calmodulin). Isolates also showed morphological similarity with M. oryzae as described in other reports, e.g., (3). Spores of M. oryzae were produced on rice agar under “black light” at 21°C for 4 weeks. Under 30/28°C (day/night), 14/12 h (light/dark), rice cv. Quest was grown for 7 weeks, and inoculated by spraying a suspension 5 × 105 spores/ml onto foliage until runoff occurred. Inoculated plants were placed under a dark plastic covering for 72 h to maximize humidity levels around leaves, and subsequently maintained under >90% RH conditions. Typical symptoms of rice blast appeared within 14 days of inoculation and were as described above. Infection studies were successfully repeated and M. oryzae was readily reisolated from leaf lesions. No disease symptoms were observed nor was M. oryzae isolated from water-inoculated control rice plants. There have been previous records of rice blast in the Northern Territory (2) and Queensland, Australia (Australian Plant Pest Database), but this is the first report of M. oryzae in Western Australia, where it could potentially be destructive if conditions prove conducive. References: (1) B. C. Couch and L. M. Kohn. Mycologia 94:683, 2002; (2) J. B. Heaton. The Aust. J. Sci. 27:81, 1964; (3) C. V. Subramanian. IMI Descriptions of Fungi and Bacteria No 169, Pyricularia oryzae, 1968; (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2330-2330 ◽  
Author(s):  
P. K. Malaker ◽  
N. C. D. Barma ◽  
T. P. Tiwari ◽  
W. J. Collis ◽  
E. Duveiller ◽  
...  

2021 ◽  
Vol 60 (1) ◽  
pp. 105-111
Author(s):  
Krishna Kanta ROY ◽  
Muzahid RAHMAN ◽  
Kishowar MUSTARIN ◽  
Mostafa Ali REZA ◽  
Paritosh Kumar MALAKER ◽  
...  

Durum wheat (Triticum turgidum var. durum Desf.) is an important cereal crop in many regions of the world. In March of 2018 and 2019, symptoms typical of blast were frequently observed on durum wheat plants under field conditions in Jashore, Bangladesh. The putative causal pathogen was isolated from infected wheat spike specimens onto potato dextrose agar and oatmeal agar, and was identified from mono-conidium cultures as Magnaporthe oryzae, based on morphological features. The pathotype of the fungus was identified as Triticum, based on comparative molecular analyses of ITS sequences and MoT3 specific markers. BLAST analysis revealed >99.8% similarity with M. oryzae/P. oryzae, retrieved from the NCBI Genebank. This was confirmed through amplification of the predicted products with MoT3 primers in PCR analysis. Pathogenicity was confirmed by inoculating healthy durum wheat seedling leaves and spikes with a conidium suspensions of M. oryzae isolate DuBWMRI1901.2A. The fungus produced similar symptoms on inoculated leaves and spikes as those observed in the field, and was subsequently re-isolated, fulfilling Koch’s postulates. This is the first report of blast of durum wheat caused by Magnaporthe oryzae pathotype Triticum in Bangladesh.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 586-586
Author(s):  
K. R. Dorneles ◽  
M. O. Bastiani ◽  
R. Mocellin ◽  
C. Bellé ◽  
L. J. Dallagnol

Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2966-2966
Author(s):  
T. R. Russell ◽  
J. E. Kaminski ◽  
P. H. Dernoeden

Author(s):  
Krishna Kanta Roy ◽  
Muzahid-E-Rahman ◽  
Mostofa Ali Reza ◽  
Kishowar E Mustarin ◽  
Paritosh Kumar Malaker ◽  
...  

1988 ◽  
Vol 62 (01) ◽  
pp. 141-143 ◽  
Author(s):  
Gerard M. Thomas ◽  
George O. Poinar

A sporulating Aspergillus is described from a piece of Eocene amber originating from the Dominican Republic. The Aspergillus most closely resembles a form of the white spored phase of Aspergillus janus Raper and Thom. This is the first report of a fossil species of Aspergillus.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Sign in / Sign up

Export Citation Format

Share Document