Phytopathologia Mediterranea
Latest Publications


TOTAL DOCUMENTS

43
(FIVE YEARS 42)

H-INDEX

0
(FIVE YEARS 0)

Published By Firenze University Press

1593-2095, 0031-9465

2021 ◽  
Vol 60 (2) ◽  
pp. 253-257
Author(s):  
Duccio MIGLIORINI ◽  
Francesco PECORI ◽  
Aida RAIO ◽  
Nicola LUCHI ◽  
Domenico RIZZO ◽  
...  

2-years-old plants of Pyrus communis showing symptoms of fire blight disease were sampled in an orchard in Tuscany (Italy) during Autumn 2020. Plants were obtained the previous spring from a commercial nursery located in a region where the disease is present since 1994. The collected material was processed in the lab in order to verify the presence of the bacterium Erwinia amylovora, the causal agent of fire blight. Pure isolates showing white mucoid colonies and levan producers on Levan medium were putatively assimilated to E. amylovora. DNA was extracted from the cultures and analysed with three molecular assays, including duplex PCR of the 29-Kb plasmid pEA29 and the ams chromosomal region, sequencing of the 16S rDNA and recA gene regions, two real-time PCR assays on symptomatic plant tissues. All tests confirmed the presence of E. amylovora. Symptomatic and surrounding plants were removed and immediately destroyed according to the regional phytosanitary protocol. This outcome poses a serious threat for fruit orchards in the area.


2021 ◽  
Vol 60 (2) ◽  
pp. 259-263
Author(s):  
Evgeniy KOPILOV ◽  
Hanna TSEKHMISTER ◽  
Olena NADKERNYCHNA ◽  
Anna KYSLYNSKA

A fungus was isolated from diseased roots of Cucumis sativus grown in greenhouses. The morphological and cultural characteristics of the isolate allowed it to be classified as Plectosphaerella melonis. BLASTn analysis revealed 99% homology of the ITS sequence from the isolate with 14 Acremonium cucurbitacearum and P. melonis isolates, allowing attribution of the isolate to P. melonis (syn. A. cucurbitacearum). Koch’s hypothesis requirements were fulfilled for the isolate. Symptoms on host roots developed after 14 d of growing cucumber plants on infested soil. Plants of the cucumber variety Nizhynskyi 12 were very susceptible at the two leaf growth stage (2 weeks after sowing). Above-ground disease symptoms were absent after 14 d, even with severely diseased roots. This is the first report of P. melonis on C. sativus in Ukraine.


2021 ◽  
Vol 60 (2) ◽  
pp. 351-379
Author(s):  
Samuele MORETTI ◽  
Andrea PACETTI ◽  
Romain PIERRON ◽  
Hanns-Heinz KASSEMEYER ◽  
Michael FISCHER ◽  
...  

Fomitiporia mediterranea M. Fisch. (Fmed) is a basidiomycete first described in 2002, and was considered up to then as part of Fomitiporia punctata (P. Karst) Murrill. This fungus can degrade lignocellulosic biomass, causing white rot and leaving bleached fibrous host residues. In Europe Fmed is considered the main grapevine wood rot (Esca) agent within the Esca disease complex, which includes some of the most economically important Grapevine Trunk Diseases (GTDs). This review summarises and evaluates published research on Fmed, on white rot elimination by curettage or management by treatments with specific products applied to diseased grapevines, and on the relationship between wood symptoms and Grapevine Leaf Stripe Disease (GLSD) in the Esca disease complex. Information is also reviewed on the fungus biology, mechanisms of pathogenicity, and their possible relationships with external foliar symptoms of the Esca disease complex. Information on Fmed control strategies is also reviewed.


2021 ◽  
Vol 60 (2) ◽  
pp. 265-279
Author(s):  
Lourdes SOTO-MUÑOZ ◽  
Victoria MARTÍNEZ-BLAY ◽  
María B. PÉREZ-GAGO ◽  
Asunción FERNÁNDEZ-CATALÁN ◽  
Maricruz ARGENTE-SANCHIS ◽  
...  

The curative antifungal activity of edible composite coatings (ECs) based on pregelatinized potato starch-glyceryl monostearate (PPS-GMS) formulated with or without sodium benzoate (SB) to control green mould (caused by Penicillium digitatum) and blue mould (P. italicum) was assessed on ‘Orri’ mandarins, ‘Valencia’ oranges and ‘Fino’ lemons. These fruit were artificially inoculated with P. digitatum or P. italicum, treated by immersion in coating emulsions and compared to uncoated control fruit immersed in water and fruit immersed in 2% SB (w/v) aqueous solution. Treated fruit were then stored at either 20°C or commercial low temperature (5°C for mandarins and oranges, 12°C for lemons). Coatings without SB did not exhibit antifungal activity, whereas coatings containing 2% SB reduced incidence and severity of green and blue moulds, in comparison to the controls, on all citrus species and in all storage conditions, without differing from the aplication of 2% SB alone. For example, incidence reduction on ‘Fino’ lemons was from 99 to 0% after 7 d at 20°C, and from 99 to 30% after 2 weeks at 12°C. None of the treatments was phytotoxic. These results indicate that applications of SB as antifungal ingredient of PPS-GMS based ECs is a promising non-polluting alternative to control Penicillium postharvest decay of citrus, and these ECs are effective substitutes for conventional waxes amended with synthetic fungicides.


2021 ◽  
Vol 60 (2) ◽  
pp. 199-214
Author(s):  
Abdulrahman MOUKAHEL ◽  
Safaa G. KUMARI ◽  
Abdelmagid Adlan HAMED ◽  
Murray SHARMAN ◽  
Seid AHMED

In Sudan yellowing viruses are key production constraints in pulse crops. Field surveys were carried out to identify luteovirids affecting chickpea crops in the major production regions (Gezira Scheme and River Nile State). A total of 415 chickpea plant samples with yellowing and stunting symptoms were collected during the 2013, 2015 and 2018 growing seasons. Serological results (Tissue-blot immunoassays) showed that Luteoviridae and Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) were the most common viruses, with rare infections with Faba bean necrotic yellows virus (FBNYV, genus Nanovirus, family Nanoviridae). Some samples reacted only with a broad-spectrum luteovirid monoclonal antibody (5G4-MAb), and others showed cross reactions between the specific monoclonal antibodies, suggesting the occurrence of new luteovirid variants. Serological results were confirmed by amplification with reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of the partial coat protein gene. Molecular analyses provided a basic, sufficient and reliable characterization for four viruses affecting chickpea that belong to Polerovirus (family Luteoviridae). These were Cucurbit aphid-borne yellows virus (CABYV), Pepper vein yellows virus (PeVYV), Pepo aphid-borne yellows virus (PABYV) and Cotton leafroll dwarf virus (CLRDV), that shared high similarity with the type sequences. Phylogenetic analyses also revealed high similarity to luteovirid species. This study has established reliable, rapid and sensitive molecular tools for the detection of luteovirid species.


2021 ◽  
Vol 60 (2) ◽  
pp. 381-385
Author(s):  
Diana CERVANTES ◽  
Mary RIDOUT ◽  
Claudia NISCHWITZ ◽  
George NEWCOMBE

Wild plants produce abundant seeds and seedlings, but most die before reaching maturity, and these premature deaths are often caused by pathogens. Major genes for resistance protect some seedlings or juveniles. These selected individuals can become a resistant, mature cohort. Alternatively, plants can exhibit mature, adult plant resistance. These two explanations can be indistinguishable in the field, when epidemics in natural pathosystems occur regularly resulting in annual selection for resistance. This study included multi-year observations of a biennial plant where the distinction could be made. White rust of Lunaria annua, a pathosystem native to the Mediterranean Basin, took time in its introduced range in Idaho, USA, to generate epidemics. After years of minimal white rust, an epidemic occurred in 2017 in which first-year, juvenile plants had 20 times the sorus density of second-year, adult plants. Since white rust incidence had been minimal for years prior to 2017, the greater resistance of 2017 adults over 2017 juveniles may have been due to adult-plant resistance. This could also be due to phenology: adult plants have mature leaves, and are flowering and maturing seed, by the time that white rust begins to build up on leaves of juveniles. The juvenile-adult difference was maintained in 2018. In white blister rusts, interpretation of resistance can also be complicated by the frequency of asymptomatic infections that adult plants would pass on to the next generation. However, we found no asymptomatic infection of seeds of L. annua in our sampling of the Idaho population.


2021 ◽  
Vol 60 (2) ◽  
pp. 177-198
Author(s):  
Yamin DU ◽  
Xianhong WANG ◽  
Yashuang GUO ◽  
Feng XIAO ◽  
Yuhong PENG ◽  
...  

Diaporthe species are significant pathogens, saprobes, and endophytes, with comprehensive host association and geographic distribution. These fungi cause severe dieback, cankers, leaf spots, blights, and stem-end rot of fruits on different plant hosts. This study, explored the occurrence, diversity and pathogenicity of Diaporthe spp. associated with Actinidia chinensis and A. deliciosa in the main kiwifruit production areas of China. Diaporthe isolates (284) derived from 106 diseased leaf and branch samples were examined. Multi-locus phylogenetic analyses and morphology of 43 representative isolates revealed that seven Diaporthe species were obtained, including D. alangii, D. compactum, D. eres, D. hongkongensis, D. sojae, D. tectonae, and D. unshiuensis. Pathogenicity tests were performed on kiwifruit fruits, leaves and branches. Koch’s postulates confirmed all species were pathogenic. D. alangii and D. tectonae were the most aggressive species, followed by D. eres, D. sojae, D. hongkongensis, D. unshiuensis, and D. compactum. Host range evaluation showed that the seven Diaporthe species could also infect apricot, apple, peach, pear, and plum.  This is the first report of D. alangii, D. compactum, D. sojae, D. tectonae, and D. unshiuensis infecting kiwifruit in China, increasing understanding of the Diaporthe complex causing diseases of kiwifruit plants, to assist effective disease management.


2021 ◽  
Vol 60 (2) ◽  
pp. 337-349
Author(s):  
Panaghiotis TSOPELAS ◽  
Nikoleta SOULIOTI ◽  
Michael J. WINGFIIELD ◽  
Irene BARNES ◽  
Seonju MARINCOWITZ ◽  
...  

Ceratocystis ficicola causes vascular wilt of fig trees in Japan, invading root systems and the main stems eventually leading to tree death. In surveys from 2018 to 2020 in fig orchards in Greece, this fungus was detected in two separated regions. The fungus was consistently isolated from infected wood and from rhizosphere soil. The isolates were identified based on multi-locus phylogenetic analyses of rpb2, bt1 and tef1 gene regions and detailed morphological characteristics, including comparisons with an ex-type isolate of C. ficicola from Japan. The pathogenicity of Greek isolates was proven on Ficus carica and F. benjamina plants. Ceratocystis ficicola is a soil-borne pathogen, and the occurrence of vascular wilt outbreaks suggest that the pathogen spreads within and between orchards with infested soil and wood debris during ploughing. The pathogen is also spreading in Greece with infected propagation material. This is the first detailed report of C. ficicola outside Japan, and there is concern over potential spread of the pathogen to other Mediterranean countries, where approx. 70% of the world fig production occurs.


2021 ◽  
Vol 60 (2) ◽  
pp. 237-251
Author(s):  
Edelweiss A. RANGEL-MONTOYA ◽  
Marcos PAOLINELLI ◽  
Philippe E. ROLSHAUSEN ◽  
Cesar VALENZUELA-SOLANO ◽  
Rufina HERNANDEZ-MARTINEZ

Botryosphaeria dieback is one of the most prevalent grapevine trunk diseases (GTDs), and is caused by fungi in the Botryosphaeriaceae. Fungi invade grapevine vascular systems mainly through pruning wounds, and cause cankers and necrotic lesions, which lead to grapevine decline and death. Lasiodiplodia theobromae has been reported as a highly virulent pathogen of grapevine, and was previously reported in Mexican vineyards. The taxonomy of Lasiodiplodia was recently revised, adding new species, and some were reduced to synonymy. This study aimed to characterize Lasio-diplodia producing grapevine dieback symptoms in Sonora and Baja California, Mexico. Using the phylogenetic markers tef1-α and ITS regions, Lasiodiplodia brasiliensis, L. crassispora, L. exigua, and L. gilanensis were identified. Lasidiplodia exigua was the most prevalent species. Lasiodiplodia brasiliensis and L. gilanensis were very virulent to ‘Cabernet Sauvignon’ plants, while L. exigua and L. gilanensis were less virulent, and L. crassispora did not produce lesions at 2 months post-inoculation. The optimum temperature of the Lasiodiplodia spp. was 28°C, but all four species grew up to 37°C, and the isolates of L. exigua grew slowly at 40°C. This is the first report of the four of Lasio-diplodia species in vineyards of Mexico.


2021 ◽  
Vol 60 (2) ◽  
pp. 229-236
Author(s):  
Abraham YIRGU ◽  
Alemu GEZAHGNE ◽  
Tesfaye ALEMU ◽  
Minette HAVENGA ◽  
Lizel MOSTERT

Cultivation of apple trees in the highlands of Ethiopia began in 1955. In 2014, blistering of the bark due to cankers on the main stems mostly below the grafting points, followed by dieback and eventually death of apple trees, was observed in apple orchards in the Hadiya Zone in Ethiopia. This study aimed to identify the causal agent of canker and dieback symptoms on the apple trees. Symptomatic trunks from 20 trees (ten per cultivar) were sampled. Isolations were performed from ten trunks (five per cultivar). Fungus colonies with similar cultural features were obtained from all the samples, and the morphology of a representative isolate was characterized. Phylogenetic analyses of the concatenated internal transcribed spacers 1 and 2 and 5.8S rRNA gene, large subunit and actin gene regions confirmed the identity of two isolates as Didymosphaeria rubi-ulmifolii. Pathogenicity was confirmed for one isolate by inoculations of healthy branches of ‘Anna’ and ‘Dorsett Golden’ apple trees resulting in lesion formation, and subsequent re-isolation of the inoculated fungus. This study is the first report of D. rubi-ulmifolii associated with dieback of apple trees. This pathogen caused death of more than 26% of apple trees in one commercial orchard, and could cause severe losses for smallholder apple growers in Ethiopia. Future studies are required to assess the magnitude, distribution and management options of this economically important canker disease in Ethiopia.


Sign in / Sign up

Export Citation Format

Share Document