A Peridynamic Model for the Dynamics of Defects with Asymmetric Potential Wells

Author(s):  
Jiacheng Xing ◽  
Jianxiang Wang ◽  
Linjuan Wang
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xuhao Zhang ◽  
Xiao Li ◽  
Aijie Cheng ◽  
Hong Wang

2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ < 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


1991 ◽  
Vol 06 (25) ◽  
pp. 4491-4515 ◽  
Author(s):  
OLAF LECHTENFELD ◽  
RASHMI RAY ◽  
ARUP RAY

We investigate a zero-dimensional Hermitian one-matrix model in a triple-well potential. Its tree-level phase structure is analyzed semiclassically as well as in the framework of orthogonal polynomials. Some multiple-arc eigenvalue distributions in the first method correspond to quasiperiodic large-N behavior of recursion coefficients for the second. We further establish this connection between the two approaches by finding three-arc saddle points from orthogonal polynomials. The latter require a modification for nondegenerate potential minima; we propose weighing the average over potential wells.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3926
Author(s):  
Joanna Iwaniec ◽  
Grzegorz Litak ◽  
Marek Iwaniec ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
...  

In this paper, the frequency broadband effect in vibration energy harvesting was studied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric transducers. Corresponding solutions were investigated for system excitation harmonics at various frequencies. Solutions for the higher voltage output were collected in specific branches of the power output diagram. Both the resonant solution synchronized with excitation and the frequency responses of the subharmonic spectra were found. The selected cases were illustrated and classified using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence quantification analysis (RQA) measures were used to characterize the discussed solutions.


1994 ◽  
Vol 72 (3) ◽  
pp. 673-677 ◽  
Author(s):  
Eric E. Aubanel ◽  
André D. Bandrauk

We examine two consequences of the unique behaviour of molecules in strong fields. First, by time gating of laser-induced avoided crossings with femtosecond laser pulses, one can obtain efficient vibrational inversion into a narrow distribution of vibrational levels of a molecular ion. We demonstrate this by numerical solution of the time-dependent Schrödinger equation for [Formula: see text] Second, we show results of numerical calculation with vibrationally excited [Formula: see text] of harmonic generation up to the 11th order of an intense 1064- nm laser. We predict that competition of photodissociation can be minimized by trapping the molecule in high-field-induced potential wells, thus enhancing the high-order harmonic generation process. Furthermore, the harmonic spectrum can serve as a measure of the structure of these laser-induced potentials.


Sign in / Sign up

Export Citation Format

Share Document