Optimal spatial filtering for brain oscillatory activity using the Relevance Vector Machine

2013 ◽  
Vol 14 (4) ◽  
pp. 357-369 ◽  
Author(s):  
P. Belardinelli ◽  
A. Jalava ◽  
J. Gross ◽  
J. Kujala ◽  
R. Salmelin
2018 ◽  
Author(s):  
Florian H. Kasten ◽  
Burkhard Maess ◽  
Christoph S. Herrmann

AbstractNon-invasive approaches to modulate oscillatory activity in the brain receive growing popularity in the scientific community. Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations in a frequency specific manner. Due to a massive stimulation artifact at the targeted frequency, only little is known about effects of tACS during stimulation. I.e. it remains unclear how the continuous application of tACS affects event-related oscillations during cognitive tasks. Depending on whether tACS merely affects pre‐ or post-stimulus oscillations or both, stimulation can alter patterns of event-related oscillatory dynamics in various directions or may not affect them at all. Thus, knowledge about these directions is crucial to plan, predict and understand outcomes of solely behavioral tACS experiments. Here, a recently proposed procedure to suppress tACS artifacts by projecting MEG data into source space using spatial filtering was utilized to recover event-related power modulations in the alpha band during a mental rotation task. MEG of twenty-five volunteers was continuously recorded. After 10 minutes of baseline measurement, they received either 20 minutes of tACS at individual alpha frequency or sham stimulation. Another 40 minutes of MEG were acquired thereafter. Data were projected into source space and carefully examined for residual artifacts. Results revealed strong facilitation of event-related power modulations in the alpha band during tACS application. Data provide first direct evidence, that tACS does not counteract top-down suppression of intrinsic oscillations, but rather enhances pre-existent power modulations within the range of the individual alpha (=stimulation) frequency.SignificanceTranscranial alternating current stimulation (tACS) is increasingly used in cognitive neuroscience to study the causal role of brain oscillations and cognition. However, online effects of tACS so far largely remain a ‘black box’ due to an intense electromagnetic artifact encountered during stimulation. The current study is the first to employ a spatial filtering approach to recover and systematically study event-related oscillatory dynamics during tACS, which can potentially be altered in various directions. TACS facilitated pre-existing patterns of oscillatory dynamics during the employed mental rotation task, but does not counteract or overwrite them. In addition, control analysis and a measure to quantify tACS artifact suppression are provided that can enrich future studies investigating tACS online effects.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S167
Author(s):  
P. Belardinelli ◽  
A. Jalava ◽  
J. Gross ◽  
J. Kujala ◽  
R. Salmelin

2016 ◽  
Author(s):  
Michael X Cohen

AbstractBackgroundLarge-scale synchronous neural activity produces electrical fields that can be measured by electrodes outside the head, and volume conduction ensures that neural sources can be measured by many electrodes. However, most data analyses in M/EEG research are univariate, meaning each electrode is considered as a separate measurement. Several multivariate linear spatial filtering techniques have been introduced to the cognitive electrophysiology literature, but these techniques are not commonly used; comparisons across filters would be beneficial to the field.New methodThe purpose of this paper is to evaluate and compare the performance of several linear spatial filtering techniques, with a focus on those that use generalized eigendecomposition to facilitate dimensionality reduction and signal-to-noise ratio maximization.ResultsSimulated and empirical data were used to assess the accuracy, signal-to-noise ratio, and interpretability of the spatial filter results. When the simulated signal is powerful, different spatial filters provide convergent results. However, more subtle signals require carefully selected analysis parameters to obtain optimal results.Comparison with existing methodsLinear spatial filters can be powerful data analysis tools in cognitive electrophysiology, and should be applied more often; on the other hand, spatial filters can latch onto artifacts or produce uninterpretable results.ConclusionsHypothesis-driven analyses, careful data inspection, and appropriate parameter selection are necessary to obtain high-quality results when using spatial filters.


2019 ◽  
Vol 28 (4) ◽  
pp. 834-842
Author(s):  
Harini Vasudevan ◽  
Hari Prakash Palaniswamy ◽  
Ramaswamy Balakrishnan

Purpose The main purpose of the study is to explore the auditory selective attention abilities (using event-related potentials) and the neuronal oscillatory activity in the default mode network sites (using electroencephalogram [EEG]) in individuals with tinnitus. Method Auditory selective attention was measured using P300, and the resting state EEG was assessed using the default mode function analysis. Ten individuals with continuous and bothersome tinnitus along with 10 age- and gender-matched control participants underwent event-related potential testing and 5 min of EEG recording (at wakeful rest). Results Individuals with tinnitus were observed to have larger N1 and P3 amplitudes along with prolonged P3 latency. The default mode function analysis revealed no significant oscillatory differences between the groups. Conclusion The current study shows changes in both the early sensory and late cognitive components of auditory processing. The change in the P3 component is suggestive of selective auditory attention deficit, and the sensory component (N1) suggests an altered bottom-up processing in individuals with tinnitus.


2012 ◽  
Vol 3 (4) ◽  
pp. 153-156
Author(s):  
A.Rajamani A.Rajamani ◽  
◽  
Dr.V.Krishnaveni Dr.V.Krishnaveni

2020 ◽  
Vol 132 (4) ◽  
pp. 1234-1242 ◽  
Author(s):  
Paolo Belardinelli ◽  
Ramin Azodi-Avval ◽  
Erick Ortiz ◽  
Georgios Naros ◽  
Florian Grimm ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson’s disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21–35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4–6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.


Sign in / Sign up

Export Citation Format

Share Document