The prospects of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst) in mixed mountain forests under various management strategies, climate change and high browsing pressure

2017 ◽  
Vol 136 (5-6) ◽  
pp. 1071-1090 ◽  
Author(s):  
Matija Klopčič ◽  
Marco Mina ◽  
Harald Bugmann ◽  
Andrej Bončina
2019 ◽  
Vol 92 (5) ◽  
pp. 512-522 ◽  
Author(s):  
Torben Hilmers ◽  
Admir Avdagić ◽  
Leszek Bartkowicz ◽  
Kamil Bielak ◽  
Franz Binder ◽  
...  

Abstract Mixed mountain forests of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst), and silver fir (Abies alba Mill.) cover a total area of more than 10 million hectares in Europe. Due to altitudinal zoning, these forests are particularly vulnerable to climate change. However, as little is known about the long-term development of the productivity and the adaptation and mitigation potential of these forest systems in Europe, reliable information on productivity is required for sustainable forest management. Using generalized additive mixed models this study investigated 60 long-term experimental plots and provides information about the productivity of mixed mountain forests across a variety of European mountain areas in a standardized way for the first time. The average periodic annual volume increment (PAI) of these forests amounts to 9.3 m3ha−1y−1. Despite a significant increase in annual mean temperature the PAI has not changed significantly over the last 30 years. However, at the species level, we found significant changes in the growth dynamics. While beech had a PAI of 8.2 m3ha−1y−1 over the entire period (1980–2010), the PAI of spruce dropped significantly from 14.2 to 10.8 m3ha−1y−1, and the PAI of fir rose significantly from 7.2 to 11.3 m3ha−1y−1. Consequently, we observed stable stand volume increments in relation to climate change.


2021 ◽  
pp. 141-187
Author(s):  
H. Pretzsch ◽  
T. Hilmers ◽  
E. Uhl ◽  
M. del Río ◽  
A. Avdagić ◽  
...  

AbstractUnderstanding tree and stand growth dynamics in the frame of climate change calls for large-scale analyses. For analysing growth patterns in mountain forests across Europe, the CLIMO consortium compiled a network of observational plots across European mountain regions. Here, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir.First, we sketch the state of the art of existing monitoring and observational approaches for assessing the growth of mountain forests. Second, we introduce the design, measurement protocols, as well as site and stand characteristics, and we stress the innovation of the newly compiled network. Third, we give an overview of the growth and yield data at stand and tree level, sketch the growth characteristics along elevation gradients, and introduce the methods of statistical evaluation. Fourth, we report additional measurements of soil, genetic resources, and climate smartness indicators and criteria, which were available for statistical evaluation and testing hypotheses. Fifth, we present the ESFONET (European Smart Forest Network) approach of data and knowledge dissemination. The discussion is focussed on the novelty and relevance of the database, its potential for monitoring, understanding and management of mountain forests toward climate smartness, and the requirements for future assessments and inventories.In this chapter, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir. We present how to acquire and evaluate data from individual trees and the whole stand to quantify and understand the growth of mountain forests in Europe under climate change. It will provide concepts, models, and practical hints for analogous trans-geographic projects that may be based on the existing and newly recorded data on forests.


2018 ◽  
Vol 64 (No. 6) ◽  
pp. 245-250 ◽  
Author(s):  
Podrázský Vilém ◽  
Vacek Zdeněk ◽  
Kupka Ivo ◽  
Vacek Stanislav ◽  
Třeštík Michal ◽  
...  

The effects of silver fir (Abies alba Miller) on the soil compared to Norway spruce (Picea abies (Linnaeus) H. Karsten) were evaluated. Altitude of the study site is 790 m a.s.l., mild slope of 10° facing SW, forest site is spruce-beech on acid soil. The forest floor and top soil horizons (L + F1, F2 + H, Ah) were sampled in 4 replications beneath unmixed Norway spruce and silver fir groups. Comparing the soil-forming effects of both species, few significant differences were found in the Ah horizon – contents of total C, N, exchangeable Al and plant available Ca were higher beneath spruce. The soil improving role of silver fir compared to spruce was confirmed at the studied locality.


2017 ◽  
Vol 403 ◽  
pp. 61-78 ◽  
Author(s):  
Franka Huth ◽  
Alexandra Wehnert ◽  
Katharina Tiebel ◽  
Sven Wagner

2004 ◽  
Vol 82 (9) ◽  
pp. 1338-1345 ◽  
Author(s):  
B Metzler ◽  
U Hecht

Water saturation of wood impedes the availability of oxygen necessary for wood decay. Storage of logs under water sprinkling is therefore used as an economic method in forestry. However, sapwood decay caused by Armillaria spp. was found in logs under water sprinkling, even at a wood moisture content of more than 150% (dry weight basis). Decay was associated with the formation of tubular air channels discernible as bright streaks extending from the cambial region into the sapwood. Their light colour results from different refraction of light in gas-filled versus water-filled wood structures. To examine the structure of the tubular air spaces in greater detail, we sampled wood of Norway spruce (Picea abies (L.) Karst. and silver fir (Abies alba (Mill.)). Radial, transverse, as well as tangential sections of affected timber were examined, and a structural model of tubular air channels is presented. These structures are formed around wood rays by a tubular sheath of pseudoparenchymatous mycelium, which in its cellular structure is reminiscent of pseudosclerotial plates. This structure allows the efficiently located extrusion of water from water-saturated wood. The power necessary for this process is suggested to be the generation of gaseous CO2. Since the air channels are in contact with the external surface, they evidently act as a conduit allowing oxygen to enter and penetrate to a depth of several centimetres. By this unique arrangement of the tubular air channels, Armillaria spp. appear able to metabolize wood cells in an aerobic microenvironment within water-saturated wood. This results in wood decay leading to significant economic loss in stored timber despite the application of regular sprinkling.Key words: Armillaria spp., Picea abies, Abies alba, wood moisture content, oxygen supply, wood anatomy, wood decay.


Sign in / Sign up

Export Citation Format

Share Document