Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian–early Turonian carbonate reservoirs, Dezful Embayment, SW Iran

Facies ◽  
2013 ◽  
Vol 60 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Hamzeh Mehrabi ◽  
Hossain Rahimpour-Bonab
2013 ◽  
Vol 36 (4) ◽  
pp. 335-362 ◽  
Author(s):  
H. Rahimpour-Bonab ◽  
H. Mehrabi ◽  
A. Navidtalab ◽  
M. Omidvar ◽  
A. H. Enayati-Bidgoli ◽  
...  

2016 ◽  
Author(s):  
Rachel Fliflet ◽  
◽  
Justin M. Poirier ◽  
Brian J. Mahoney ◽  
Kent M. Syverson

2016 ◽  
Author(s):  
Rachel Fliflet ◽  
◽  
Justin M. Poirier ◽  
J. Brian Mahoney ◽  
Kent M. Syverson

2018 ◽  
Vol 15 (148) ◽  
pp. 20180560 ◽  
Author(s):  
Giliane P. Odin ◽  
Maria E. McNamara ◽  
Hans Arwin ◽  
Kenneth Järrendahl

Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus ( Chrysina ) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.


1987 ◽  
Vol 36 ◽  
pp. 275-287
Author(s):  
Margit Jensen ◽  
Elsebeth Thomsen

The diagenetic history of the skeletal elements of Late Pleistocene-Holocene Ophiura sarsi from the shelf off northern Norway (Andfjorden, Malangsdjupet) is elucidated by comparison with natural and induced degradation of the skeletal elements of Recent ophiuroids (brittle stars) and asteroids (sea stars) from Danish waters. Dissolution features ("core-and-rind") in the trabeculae of fossil and Recent echinoderm stereom are initiated during death and early decay of organic tissue in the animals. The trabeculae have a polycrystal­line lamellar ultrastructure and lose their older central part during later stages of dissolution, which are dependant on undersaturation of the sea-water with regard to CaC03• The presence of undersaturated sea-water is supported by palaeoecological studies (Thomsen & Vorren 1984, 1986) implying oxygen deficient periods in the Late Pleistocene and an increased biogenic production in the Holocene. Pyrite framboids are situated in the secondary voids within the trabeculae and in the pore space of the stereom of the Late Pleistocene elements. No pyrite is observed within the polycrystalline lamellar ultrastructure of the trabeculae. The Late Pleistocene "pyritization" took place during oxygen deficient periods at the sediment-water interface or within the reduced zone of the topmost sediment.


Sign in / Sign up

Export Citation Format

Share Document