scholarly journals Ultrastructure, dissolution and "pyritization" of Late Quaternary and Recent echinoderms

1987 ◽  
Vol 36 ◽  
pp. 275-287
Author(s):  
Margit Jensen ◽  
Elsebeth Thomsen

The diagenetic history of the skeletal elements of Late Pleistocene-Holocene Ophiura sarsi from the shelf off northern Norway (Andfjorden, Malangsdjupet) is elucidated by comparison with natural and induced degradation of the skeletal elements of Recent ophiuroids (brittle stars) and asteroids (sea stars) from Danish waters. Dissolution features ("core-and-rind") in the trabeculae of fossil and Recent echinoderm stereom are initiated during death and early decay of organic tissue in the animals. The trabeculae have a polycrystal­line lamellar ultrastructure and lose their older central part during later stages of dissolution, which are dependant on undersaturation of the sea-water with regard to CaC03• The presence of undersaturated sea-water is supported by palaeoecological studies (Thomsen & Vorren 1984, 1986) implying oxygen deficient periods in the Late Pleistocene and an increased biogenic production in the Holocene. Pyrite framboids are situated in the secondary voids within the trabeculae and in the pore space of the stereom of the Late Pleistocene elements. No pyrite is observed within the polycrystalline lamellar ultrastructure of the trabeculae. The Late Pleistocene "pyritization" took place during oxygen deficient periods at the sediment-water interface or within the reduced zone of the topmost sediment.

2002 ◽  
Vol 58 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Ulrich Salzmann ◽  
Philipp Hoelzmann ◽  
Irena Morczinek

AbstractThe Lake Tilla crater lake in northeastern Nigeria (10°23′N, 12°08′E) provides a ca. 17,000 14C yr multiproxy record of the environmental history of a Sudanian savanna in West Africa. Evaluation of pollen, diatoms, and sedimentary geochemistry from cores suggests that dry climatic conditions prevailed throughout the late Pleistocene. Before the onset of the Holocene, the slow rise in lake levels was interrupted by a distinct dry event between ca. 10,900 and 10,500 14C yr B.P., which may coincide with the Younger Dryas episode. The onset of the Holocene is marked by an abrupt increase in lake levels and a subsequent spread of Guinean and Sudanian tree taxa into the open grass savanna that predominated throughout the Late Pleistocene. The dominance of the mountain olive Olea hochstetteri suggests cool climatic conditions prior to ca. 8600 14C yr B.P. The early to mid-Holocene humid period culminated between ca. 8500 and 7000 14C yr B.P. with the establishment of a dense Guinean savanna during high lake levels. Frequent fires were important in promoting the open character of the vegetation. The palynological and palaeolimnological data demonstrate that the humid period terminated after ca. 7000 14C yr B.P. in a gradual decline of the precipitation/evaporation ratio and was not interrupted by abrupt climatic events. The aridification trend intensified after ca. 3800 14C yr B.P. and continued until the present.


2005 ◽  
Vol 64 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Roland Zech ◽  
Uwe Abramowski ◽  
Bruno Glaser ◽  
Pjotr Sosin ◽  
Peter W. Kubik ◽  
...  

AbstractMoraines southwest of Lake Yashilkul, Pamir, Tajikistan, were dated using 10Be exposure ages of boulder surfaces. We found evidence for (1) an extensive glaciation ∼60,000 yr ago; (2) a less extensive glacial advance, which deposited a characteristic hummocky moraine lobe with exposure ages ranging from ∼11,000 to 47,000 yr, probably deposited at or before 47,000 yr ago; and (3) lateral moraines with exposure ages of ∼40,000 yr, 27,000 yr and 19,000 yr, respectively. Increasing aridity in the Pamir is most likely responsible for the progressively limited extent of the glaciers during the Late Pleistocene.


1983 ◽  
Vol 20 (12) ◽  
pp. 1834-1842 ◽  
Author(s):  
R. A. Kostaschuk ◽  
D. G. Smith

Evidence provided by surface morphology, exposures, cores, and the stratigraphic positions of Mazama (6600 years BP) and Bridge River (2500 years BP) ashes was used to interpret the origin and late Quaternary history of lacustrine and deltaic sediments in the Bow River valley near Banff, Alberta.There were three distinct stages of Lake Vermilion occupying the study area from Late Pleistocene to mid-Holocene times. The earliest stage was ice dammed, deposited beach gravel and nearshore sand, and drained along the present course of the Cascade River to the east. The second, proglacial stage is associated with thick subsurface deposits of non-organic clay and drained to the east along the course of the modern Bow River. The final stage is suggested by point bar and aeolian beach dune sediments.With the stabilization of the final stage of Lake Vermilion the low-energy, river-dominated Bow Delta prograded into the lake from the west. Progradation of the delta through three depositional zones produced the present Vermilion Lakes.


2000 ◽  
Vol 30 (3) ◽  
pp. 474-476 ◽  
Author(s):  
LUIZ JOSÉ TOMAZELLI ◽  
SÉRGIO REBELLO DILLENBURG ◽  
JORGE ALBERTO VILLWOCK

2016 ◽  
Author(s):  
Rachel Fliflet ◽  
◽  
Justin M. Poirier ◽  
Brian J. Mahoney ◽  
Kent M. Syverson

Sign in / Sign up

Export Citation Format

Share Document