Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments

2014 ◽  
Vol 30 (1) ◽  
pp. 84-91 ◽  
Author(s):  
S. Ahmad Fazelzadeh ◽  
Esmaeal Ghavanloo
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1924
Author(s):  
Xing Xiao ◽  
Shang-Chun Fan ◽  
Cheng Li ◽  
Yu-Jian Liu

In consideration of the presented optical-thermally excited resonant mass detection scheme, molecular dynamics calculations are performed to investigate the thermal actuation and resonant mass sensing mechanism. The simulation results indicate that an extremely high temperature exists in a 6% central area of the graphene sheet exposed to the exciting laser. Therefore, constraining the laser driving power and enlarging the laser spot radius are essential to weaken the overheating in the middle of the graphene sheet, thus avoiding being burned through. Moreover, molecular dynamics calculations demonstrate a mass sensitivity of 214 kHz/zg for the graphene resonator with a pre-stress of 1 GPa. However, the adsorbed mass would degrade the resonant quality factor from 236 to 193. In comparison, the sensitivity and quality factor could rise by 1.3 and 4 times, respectively, for the graphene sheet with a pre-stress of 5 GPa, thus revealing the availability of enlarging pre-stress for better mass sensing performance.


Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Trung Thanh Tran ◽  
Van Ke Tran ◽  
Pham Binh Le ◽  
Van Minh Phung ◽  
Van Thom Do ◽  
...  

This paper carries out forced vibration analysis of graphene nanoplatelet-reinforced composite laminated shells in thermal environments by employing the finite element method (FEM). Material properties including elastic modulus, specific gravity, and Poisson’s ratio are determined according to the Halpin–Tsai model. The first-order shear deformation theory (FSDT), which is based on the 8-node isoparametric element to establish the oscillation equation of shell structure, is employed in this work. We then code the computing program in the MATLAB application and examine the verification of convergence rate and reliability of the program by comparing the data of present work with those of other exact solutions. The effects of both geometric parameters and mechanical properties of materials on the forced vibration of the structure are investigated.


2021 ◽  
Vol 505 ◽  
pp. 111504
Author(s):  
Lin Liu ◽  
Wenxiu Li ◽  
Ran Qi ◽  
Qingqing Zhu ◽  
Jing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document