scholarly journals Oxygen Concentration’s Effects on Respiratory Mechanics During Recruitment Manoeuvre

2019 ◽  
Vol 48 (1) ◽  
pp. 1-1
Author(s):  
Ece Salihoglu ◽  
Ziya Salihoglu
1998 ◽  
Vol 74 (4) ◽  
pp. 275-83
Author(s):  
Antônio C. P. Ferreira ◽  
Benjamin I. Kopelman ◽  
Werther Brunow de Carvalho ◽  
Jorge Bonassa

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J.-L. Diehl ◽  
N. Peron ◽  
R. Chocron ◽  
B. Debuc ◽  
E. Guerot ◽  
...  

Abstract Rationale COVID-19 ARDS could differ from typical forms of the syndrome. Objective Pulmonary microvascular injury and thrombosis are increasingly reported as constitutive features of COVID-19 respiratory failure. Our aim was to study pulmonary mechanics and gas exchanges in COVID-2019 ARDS patients studied early after initiating protective invasive mechanical ventilation, seeking after corresponding pathophysiological and biological characteristics. Methods Between March 22 and March 30, 2020 respiratory mechanics, gas exchanges, circulating endothelial cells (CEC) as markers of endothelial damage, and D-dimers were studied in 22 moderate-to-severe COVID-19 ARDS patients, 1 [1–4] day after intubation (median [IQR]). Measurements and main results Thirteen moderate and 9 severe COVID-19 ARDS patients were studied after initiation of high PEEP protective mechanical ventilation. We observed moderately decreased respiratory system compliance: 39.5 [33.1–44.7] mL/cmH2O and end-expiratory lung volume: 2100 [1721–2434] mL. Gas exchanges were characterized by hypercapnia 55 [44–62] mmHg, high physiological dead-space (VD/VT): 75 [69–85.5] % and ventilatory ratio (VR): 2.9 [2.2–3.4]. VD/VT and VR were significantly correlated: r2 = 0.24, p = 0.014. No pulmonary embolism was suspected at the time of measurements. CECs and D-dimers were elevated as compared to normal values: 24 [12–46] cells per mL and 1483 [999–2217] ng/mL, respectively. Conclusions We observed early in the course of COVID-19 ARDS high VD/VT in association with biological markers of endothelial damage and thrombosis. High VD/VT can be explained by high PEEP settings and added instrumental dead space, with a possible associated role of COVID-19-triggered pulmonary microvascular endothelial damage and microthrombotic process.


2021 ◽  
Author(s):  
Clara Serrano Zueras ◽  
Verónica Guilló Moreno ◽  
Martín Santos González ◽  
Francisco Javier Gómez Nieto ◽  
Göran Hedenstierna ◽  
...  

Author(s):  
Jianli Li ◽  
Saixian Ma ◽  
Xiujie Chang ◽  
Songxu Ju ◽  
Meng Zhang ◽  
...  

AbstractThe study aimed to investigate the efficacy of PCV-VG combined with individual PEEP during laparoscopic surgery in the Trendelenburg position. 120 patients were randomly divided into four groups: VF group (VCV plus 5cmH2O PEEP), PF group (PCV-VG plus 5cmH2O PEEP), VI group (VCV plus individual PEEP), and PI group (PCV-VG plus individual PEEP). Pmean, Ppeak, Cdyn, PaO2/FiO2, VD/VT, A-aDO2 and Qs/Qt were recorded at T1 (15 min after the induction of anesthesia), T2 (60 min after pneumoperitoneum), and T3 (5 min at the end of anesthesia). The CC16 and IL-6 were measured at T1 and T3. Our results showed that the Pmean was increased in VI and PI group, and the Ppeak was lower in PI group at T2. At T2 and T3, the Cdyn of PI group was higher than that in other groups, and PaO2/FiO2 was increased in PI group compared with VF and VI group. At T2 and T3, A-aDO2 of PI and PF group was reduced than that in other groups. The Qs/Qt was decreased in PI group compared with VF and VI group at T2 and T3. At T2, VD/VT in PI group was decreased than other groups. At T3, the concentration of CC16 in PI group was lower compared with other groups, and IL-6 level of PI group was decreased than that in VF and VI group. In conclusion, the patients who underwent laparoscopic surgery, PCV-VG combined with individual PEEP produced favorable lung mechanics and oxygenation, and thus reducing inflammatory response and lung injury.Clinical Trial registry: chictr.org. identifier: ChiCTR-2100044928


Respiration ◽  
2021 ◽  
pp. 1-8
Author(s):  
Karin Sanders ◽  
Karin Klooster ◽  
Lowie E.G.W. Vanfleteren ◽  
Guy Plasqui ◽  
Anne-Marie Dingemans ◽  
...  

<b><i>Background:</i></b> Hypermetabolism and muscle wasting frequently occur in patients with severe emphysema. Improving respiratory mechanics by bronchoscopic lung volume reduction (BLVR) might contribute to muscle maintenance by decreasing energy requirements and alleviating eating-related dyspnoea. <b><i>Objective:</i></b> The goal was to assess the impact of BLVR on energy balance regulation. <b><i>Design:</i></b> Twenty emphysematous subjects participated in a controlled clinical experiment before and 6 months after BLVR. Energy requirements were assessed: basal metabolic rate (BMR) by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water, whole body fat-free mass (FFM) by deuterium dilution, and physical activity by accelerometry. Oxygen saturation, breathing rate, and heart rate were monitored before, during, and after a standardized meal via pulse oximetry and dyspnoea was rated. <b><i>Results:</i></b> Sixteen patients completed follow-up, and among those, 10 patients exceeded the minimal clinically important difference of residual volume (RV) reduction. RV was reduced with median (range) 1,285 mL (−2,430, −540). Before BLVR, 90% of patients was FFM-depleted despite a normal BMI (24.3 ± 4.3 kg/m<sup>2</sup>). BMR was elevated by 130%. TDEE/BMR was 1.4 ± 0.2 despite a very low median (range) daily step count of 2,188 (739, 7,110). Following BLVR, the components of energy metabolism did not change significantly after intervention compared to before intervention, but BLVR treatment decreased meal-related dyspnoea (4.1 vs. 1.7, <i>p</i> = 0.019). <b><i>Conclusions:</i></b> Impaired respiratory mechanics in hyperinflated emphysematous patients did not explain hypermetabolism. <b><i>Clinical Trial Registry Number:</i></b> NCT02500004 at www.clinicaltrial.gov.


2019 ◽  
Vol 34 (6) ◽  
pp. 1199-1207
Author(s):  
Thorir Svavar Sigmundsson ◽  
Tomas Öhman ◽  
Magnus Hallbäck ◽  
Eider Redondo ◽  
Fernando Suarez Sipmann ◽  
...  

AbstractRespiratory failure may cause hemodynamic instability with strain on the right ventricle. The capnodynamic method continuously calculates cardiac output (CO) based on effective pulmonary blood flow (COEPBF) and could provide CO monitoring complementary to mechanical ventilation during surgery and intensive care. The aim of the current study was to evaluate the ability of a revised capnodynamic method, based on short expiratory holds (COEPBFexp), to estimate CO during acute respiratory failure (LI) with high shunt fractions before and after compliance-based lung recruitment. Ten pigs were submitted to lung lavage and subsequent ventilator-induced lung injury. COEPBFexp, without any shunt correction, was compared to a reference method for CO, an ultrasonic flow probe placed around the pulmonary artery trunk (COTS) at (1) baseline in healthy lungs with PEEP 5 cmH2O (HLP5), (2) LI with PEEP 5 cmH2O (LIP5) and (3) LI after lung recruitment and PEEP adjustment (LIPadj). CO changes were enforced during LIP5 and LIPadj to estimate trending. LI resulted in changes in shunt fraction from 0.1 (0.03) to 0.36 (0.1) and restored to 0.09 (0.04) after recruitment manoeuvre. Bias (levels of agreement) and percentage error between COEPBFexp and COTS changed from 0.5 (− 0.5 to 1.5) L/min and 30% at HLP5 to − 0.6 (− 2.3 to 1.1) L/min and 39% during LIP5 and finally 1.1 (− 0.3 to 2.5) L/min and 38% at LIPadj. Concordance during CO changes improved from 87 to 100% after lung recruitment and PEEP adjustment. COEPBFexp could possibly be used for continuous CO monitoring and trending in hemodynamically unstable patients with increased shunt and after recruitment manoeuvre.


Sign in / Sign up

Export Citation Format

Share Document