scholarly journals The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets

2020 ◽  
Vol 48 (4) ◽  
pp. 1430-1440 ◽  
Author(s):  
Zohreh Imani Nejad ◽  
Khalil Khalili ◽  
Seyyed Hamed Hosseini Nasab ◽  
Pascal Schütz ◽  
Philipp Damm ◽  
...  

Abstract Musculoskeletal models enable non-invasive estimation of knee contact forces (KCFs) during functional movements. However, the redundant nature of the musculoskeletal system and uncertainty in model parameters necessitates that model predictions are critically evaluated. This study compared KCF and muscle activation patterns predicted using a scaled generic model and OpenSim static optimization tool against in vivo measurements from six patients in the CAMS-knee datasets during level walking and squatting. Generally, the total KCFs were under-predicted (RMS: 47.55%BW, R 2: 0.92) throughout the gait cycle, but substiantially over-predicted (RMS: 105.7%BW, R 2: 0.81) during squatting. To understand the underlying etiology of the errors, muscle activations were compared to electromyography (EMG) signals, and showed good agreement during level walking. For squatting, however, the muscle activations showed large descrepancies especially for the biceps femoris long head. Errors in the predicted KCF and muscle activation patterns were greatest during deep squat. Hence suggesting that the errors mainly originate from muscle represented at the hip and an associated muscle co-contraction at the knee. Furthermore, there were substaintial differences in the ranking of subjects and activities based on peak KCFs in the simulations versus measurements. Thus, future simulation study designs must account for subject-specific uncertainties in musculoskeletal predictions.

Author(s):  
Alessandro Santuz ◽  
Antonis Ekizos ◽  
Yoko Kunimasa ◽  
Kota Kijima ◽  
Masaki Ishikawa ◽  
...  

AbstractWalking and running are mechanically and energetically different locomotion modes. For selecting one or another, speed is a parameter of paramount importance. Yet, both are likely controlled by similar low-dimensional neuronal networks that reflect in patterned muscle activations called muscle synergies. Here, we investigated how humans synergistically activate muscles during locomotion at different submaximal and maximal speeds. We analysed the duration and complexity (or irregularity) over time of motor primitives, the temporal components of muscle synergies. We found that the challenge imposed by controlling high-speed locomotion forces the central nervous system to produce muscle activation patterns that are wider and less complex relative to the duration of the gait cycle. The motor modules, or time-independent coefficients, were redistributed as locomotion speed changed. These outcomes show that robust locomotion control at challenging speeds is achieved by modulating the relative contribution of muscle activations and producing less complex and wider control signals, whereas slow speeds allow for more irregular control.


2012 ◽  
Vol 7 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Jack M. Burns ◽  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss ◽  
Greig Watson ◽  
Angus Burnett ◽  
...  

Purpose:Manufacturers of uncoupled cycling cranks claim that their use will increase economy of motion and gross efficiency. Purportedly, this occurs by altering the muscle-recruitment patterns contributing to the resistive forces occurring during the recovery phase of the pedal stroke. Uncoupled cranks use an independent-clutch design by which each leg cycles independently of the other (ie, the cranks are not fixed together). However, research examining the efficacy of training with uncoupled cranks is equivocal. The purpose of this study was to determine the effect of short-term training with uncoupled cranks on the performance-related variables economy of motion, gross efficiency, maximal oxygen uptake (VO2max), and muscle-activation patterns.Methods:Sixteen trained cyclists were matched-paired into either an uncoupled-crank or a normal-crank training group. Both groups performed 5 wk of training on their assigned cranks. Before and after training, participants completed a graded exercise test using normal cranks. Expired gases were collected to determine economy of motion, gross efficiency, and VO2max, while integrated electromyography (iEMG) was used to examine muscle-activation patterns of the vastus lateralis, biceps femoris, and gastrocnemius.Results:No significant changes between groups were observed for economy of motion, gross efficiency, VO2max, or iEMG in the uncoupled- or normal-crank group.Conclusions:Five weeks of training with uncoupled cycling cranks had no effect on economy of motion, gross efficiency, muscle recruitment, or VO2max compared with training on normal cranks.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S258
Author(s):  
Douglas Powell ◽  
Kurt Clowers ◽  
Maria Keefer ◽  
Songning Zhang

2017 ◽  
Vol 12 (4) ◽  
pp. 538-547 ◽  
Author(s):  
Bjørn Harald Olstad ◽  
Christoph Zinner ◽  
João Rocha Vaz ◽  
Jan M.H. Cabri ◽  
Per-Ludvik Kjendlie

Purpose:To investigate the muscle-activation patterns and coactivation with the support of kinematics in some of the world’s best breaststrokers and identify performance discriminants related to national elites at maximal effort.Methods:Surface electromyography was collected in 8 muscles from 4 world-class (including 2 world champions) and 4 national elite breaststroke swimmers during a 25-m breaststroke at maximal effort.Results:World-class spent less time during the leg recovery (P = .043), began this phase with a smaller knee angle (154.6° vs 161.8°), and had a higher median velocity of 0.18 m/s during the leg glide than national elites. Compared with national elites, world-class swimmers showed a difference in the muscle-activation patterns for all 8 muscles. In the leg-propulsion phase, there was less triceps brachii activation (1 swimmer 6% vs median 23.0% [8.8]). In the leg-glide phase, there was activation in rectus femoris and gastrocnemius during the beginning of this phase (all world-class vs only 1 national elite) and a longer activation in pectoralis major (world champions 71% [0.5] vs 50.0 [4.3]) (propulsive phase of the arms). In the leg-recovery phase, there was more activation in biceps femoris (50.0% [15.0] vs 20.0% [14.0]) and a later and quicker activation in tibialis anterior (40.0% [7.8] vs 52.0% [6.0]). In the stroke cycle, there was no coactivation in tibialis anterior and gastrocnemius for world champions.Conclusion:These components are important performance discriminants. They can be used to improve muscle-activation patterns and kinematics through the different breaststroke phases. Furthermore, they can be used as focus points for teaching breaststroke to beginners.


Author(s):  
Pavlos Silvestros ◽  
Claudio Pizzolato ◽  
David G. Lloyd ◽  
Ezio Preatoni ◽  
Harinderjit S. Gill ◽  
...  

Abstract Knowledge of neck muscle activation strategies prior to sporting impacts is crucial for investigating mechanisms of severe spinal injuries. However, measurement of muscle activations during impacts is experimentally challenging and computational estimations are not often guided by experimental measurements. We investigated neck muscle activations prior to impacts with the use of electromyography (EMG)-assisted neuromusculoskeletal models. Kinematics and EMG recordings from four major neck muscles of a rugby player were experimentally measured during rugby activities. A subject-specific musculoskeletal model was created with muscle parameters informed from MRI measurements. The model was used in the Calibrated EMG-Informed Neuromusculoskeletal Modelling toolbox and three neural solutions were compared: i) static optimisation (SO), ii) EMG-assisted (EMGa) and iii) MRI-informed EMG-assisted (EMGaMRI). EMGaMRI and EMGa significantly (p¡0.01) outperformed SO when tracking cervical spine net joint moments from inverse dynamics in flexion/extension (RMSE = 0.95, 1.14 and 2.32 Nm) but not in lateral bending (RMSE = 1.07, 2.07 and 0.84 Nm). EMG-assisted solutions generated physiological muscle activation patterns and maintained experimental co-contractions significantly (p¡0.01) outperforming SO, which was characterised by saturation and non-physiological "on-off" patterns. This study showed for the first time that physiological neck muscle activations and cervical spine net joint moments can be estimated without assumed a priori objective criteria prior to impacts. Future studies could use this technique to provide detailed initial loading conditions for theoretical simulations of neck injury during impacts.


2020 ◽  
Vol 124 (2) ◽  
pp. 330-341
Author(s):  
Sang Wook Lee ◽  
Dan Qiu ◽  
Heidi C. Fischer ◽  
Megan O. Conrad ◽  
Derek G. Kamper

We examined how hand muscles adapt to changing external (force direction) and internal (posture) conditions. Muscle activations, particularly of the extrinsic extensors, were significantly affected by postural changes of the interphalangeal, but not metacarpophalangeal, joints. Joint impedance was modulated so that the effects of the signal-dependent motor noise on the force output were reduced. Comparisons with theoretical solutions showed that the chosen activation patterns occupied a small portion of the possible solution space, minimizing the maximum activation of any one muscle.


2020 ◽  
Author(s):  
Desiderio Cano Porras ◽  
Jesse V. Jacobs ◽  
Rivka Inzelberg ◽  
Yotam Bahat ◽  
Gabriel Zeilig ◽  
...  

Abstract Background Falls commonly occur due to losses of balance associated with vertical body movements (e.g. reacting to uneven ground, street curbs). Research, however, has focused on horizontal perturbations, such as forward and backward translations of the standing surface. This study describes and compares muscle activation patterns following vertical and horizontal perturbations during standing and walking, and investigates the role of vision during the standing postural responses. Methods Fourteen healthy participants (ten males; 27±4 years-old) responded to downward, upward, forward, and backward perturbations while standing and walking in a virtual reality (VR) facility containing a moveable platform with an embedded treadmill; participants were also exposed to visual perturbations in which only the virtual scenery moves. We collected bilateral surface electromyography (EMG) signals from 8 muscles (tibialis anterior, rectus femoris, rectus abdominis, external oblique, gastrocnemius, biceps femoris, paraspinals, deltoids). Parameters included onset latency, duration of activation, and activation magnitude. Standing perturbations comprised dynamic-camera (congruent), static-camera (incongruent) and eyes-closed sensory conditions. ANOVAs were used to compare the effects of perturbation direction and sensory condition across muscles. Results Vertical perturbations induced longer onset latencies and durations of activation with lower activation magnitudes in comparison to horizontal perturbations. Downward perturbations while standing generated faster activation of rectus femoris and tibialis anterior, whereas biceps femoris and gastrocnemius were faster to respond to upward perturbations. Initial responses to downward and upward perturbations activated trunk/hip flexors and extensors, respectively. Eyes-closed conditions induced longer durations of activation and larger activation magnitudes, whereas static-camera conditions induced longer onset latencies. During walking, downward perturbations promptly activated contralateral trunk and deltoid muscles, and upward perturbations triggered early activation of trunk flexors. Visual perturbations elicited muscle activation in 67.7% of trials. Conclusion Our results demonstrate that vertical (vs. horizontal) perturbations generate unique balance-correcting muscle activations with prioritized control of trunk/hip configuration for postural control after vertical perturbations. Availability of visual input appears to affect response efficiency, and incongruent visual input can adversely affect response triggering. Our findings have clinical implications for the design of robotic exoskeletons (to ensure user safety in dynamic balance environments) and for perturbation-based balance and gait rehabilitation.


2021 ◽  
pp. 036354652110033
Author(s):  
Thomas Tampere ◽  
Jan Victor ◽  
Thomas Luyckx ◽  
Hannes Vermue ◽  
Nele Arnout ◽  
...  

Background: Rates of reinjury, return to play (RTP) at the preinjury level, and hamstring strain injuries in male soccer players after anterior cruciate ligament reconstruction (ACLR) remain unsatisfactory, due to multifactorial causes. Recent insights on intramuscular hamstring coordination revealed the semitendinosus (ST) to be of crucial importance for hamstring functioning, especially during heavy eccentric hamstring loading. Scientific evidence on the consequences of ST tendon harvest for ACLR is scarce and inconsistent. This study intended to investigate the repercussions of ST harvest for ACLR on hamstring muscle function. Hypothesis: Harvest of the ST tendon for ACLR was expected to have a significant influence on hamstring muscle activation patterns during eccentric exercises, evaluated at RTP in a population of male soccer athletes. Study Design: Controlled laboratory study. Methods: A total of 30 male soccer players with a history of ACLR who were cleared for RTP and 30 healthy controls were allocated to this study during the 2018-2019 soccer season. The influence of ACLR on hamstring muscle activation patterns was assessed by comparing the change in T2 relaxation times [ΔT2 (%) = [Formula: see text]] of the hamstring muscle tissue before and after an eccentric hamstring loading task between athletes with and without a recent history of ACLR through use of muscle functional magnetic resonance imaging, induced by an eccentric hamstring loading task between scans. Results: Significantly higher exercise-related activity was observed in the biceps femoris (BF) of athletes after ACLR compared with uninjured control athletes (13.92% vs 8.48%; P = .003), whereas the ST had significantly lower activity (19.97% vs 25.32%; P = .049). Significant differences were also established in a within-group comparison of the operated versus the contralateral leg in the ACLR group (operated vs nonoperated leg: 14.54% vs 11.63% for BF [ P = .000], 17.31% vs 22.37% for ST [ P = .000], and 15.64% vs 13.54% for semimembranosus [SM] [ P = .014]). Neither the muscle activity of SM and gracilis muscles nor total posterior thigh muscle activity (sum of exercise-related ΔT2 of the BF, ST, and SM muscles) presented any differences in individuals who had undergone ACLR with an ST tendon autograft compared with healthy controls. Conclusion: These findings indicate that ACLR with a ST tendon autograft might notably influence the function of the hamstring muscles and, in particular, their hierarchic dimensions under fatiguing loading circumstances, with increases in relative BF activity contribution and decreases in relative ST activity after ACLR. This between-group difference in hamstring muscle activation pattern suggests that the BF partly compensates for deficient ST function in eccentric loading. These alterations might have implications for athletic performance and injury risk and should probably be considered in rehabilitation and hamstring injury prevention after ACLR with a ST tendon autograft.


Sign in / Sign up

Export Citation Format

Share Document