A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges

Author(s):  
M Mohammadi ◽  
A R Saidi ◽  
E Jomehzadeh

In this article, a novel analytical method for decoupling the coupled stability equations of functionally graded (FG) rectangular plates is introduced. Based on the Mindlin plate theory, the governing stability equations that are coupled in terms of displacement components are derived. Introducing four new functions, the coupled stability equations are converted into two independent equations. The obtained equations have been solved for buckling analysis of rectangular plates with simply-supported two edges and arbitrary boundary conditions along the other edges (Levy boundary conditions). The critical buckling loads are presented for different loading conditions, various thickness to side and aspect ratios, some powers of FG materials, and various boundary conditions. The presented results for buckling of moderately thick FG plates with two simply-supported edges are reported for the first time.

Author(s):  
Meisam Mohammadi ◽  
A. R. Saidi ◽  
Mehdi Mohammadi

In the present article, the buckling analysis of thin functionally graded rectangular plates resting on elastic foundation is presented. According to the classical plate theory, (Kirchhoff plate theory) and using the principle of minimum total potential energy, the equilibrium equations are obtained for a functionally graded rectangular plate. It is assumed that the plate is rested on elastic foundation, Winkler and Pasternak elastic foundations, and is subjected to in-plane loads. Since the plate is made of functionally graded materials (FGMs), there is a coupling between the equations. In order to remove the existing coupling, a new analytical method is introduced where the coupled equations are converted to decoupled equations. Therefore, it is possible to solve the stability equations analytically for special cases of boundary conditions. It is assumed that the plate is simply supported along two opposite edges in x direction and has arbitrary boundary conditions along the other edges (Levy boundary conditions). Finally, the critical buckling loads for a functionally graded plate with different boundary conditions, some aspect ratios and thickness to side ratios, various power of FGM and foundation parameter are presented in tables and figures. It is concluded that increasing the power of FGM decreases the critical buckling load and the load carrying capacity of plate increases where the plate is rested on Pasternak in comparison with the Winkler type.


2013 ◽  
Vol 29 (2) ◽  
pp. 373-384 ◽  
Author(s):  
A. Hasani Baferani ◽  
A.R. Saidi ◽  
H. Ehteshami

AbstractIn this paper, free vibration analysis of functionally graded rectangular plate is investigated based on the first order shear deformation theory and the effect of in-plane displacements on the natural frequencies of such plate is studied. The governing equations of motion are obtained, which are five coupled partial differential equations, without any simplification. Some mathematical manipulation leads us to decouple the equations. The decoupled equations are solved by the Levy's method for various boundary conditions. As the results show, in some boundary conditions the in-plane displacements cause a drastic change of frequencies. In other words, neglecting the in-plane displacement, which is assumed in some papers, is not proper for these boundary conditions. However, in the other boundary conditions, the natural frequencies are not significantly affected by the in-plane displacements. The results for various boundary conditions are discussed in detail and some interpretations for these differences are provided. Besides to the comparisons, the accurate natural frequencies of the plate for six different boundary conditions with several aspect ratios, thickness-length ratios and power law indices are presented. The natural frequencies of Mindlin functionally graded rectangular plates with considering the in-plane displacements are reported for the first time and can be used as benchmark.


Author(s):  
A R Saidi ◽  
E Jomehzadeh

In this article, a new analytical method for bending—stretching analysis of thick functionally graded (FG) rectangular plates is presented. Using this method, the governing equations of FG rectangular plates based on the first-order shear deformation or Mindlin plate theory are decoupled. Five coupled partial differential equations of the Mindlin FG plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function. It is analytically shown that by introducing an equivalent flexural rigidity, the equations of FG rectangular plate become similar to those of the homogeneous isotropic plate. Solving these equations, the solutions are obtained for the FG rectangular plate with two opposite edges simply supported. A comparison of the present results with available solutions from previous studies is made and a good agreement can be seen. Also, the numerical results for stress and deflection of the FG rectangular plate with various boundary conditions are obtained.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xue Kai ◽  
Wang Jiufa ◽  
Li Qiuhong ◽  
Wang Weiyuan ◽  
Wang Ping

An analysis method is proposed for the vibration analysis of the Mindlin rectangular plates with general elastically restrained edges, in which the vibration displacements and the cross-sectional rotations of the mid-plane are expressed as the linear combination of a double Fourier cosine series and four one-dimensional Fourier series. The use of these supplementary functions is to solve the possible discontinuities with first derivatives at each edge. So this method can be applied to get the exact solution for vibration of plates with general elastic boundary conditions. The matrix eigenvalue equation which is equivalent to governing differential equations of the plate can be derived through using the boundary conditions and the governing equations based on Mindlin plate theory. The natural frequencies can be got through solving the matrix equation. Finally the numerical results are presented to validate the accuracy of the method.


Author(s):  
F Fallah ◽  
A Nosier

Based on the first-order non-linear von Karman theory, cylindrical bending of functionally graded (FG) plates subjected to mechanical, thermal, and combined thermo-mechanical loadings are investigated. Analytical solutions are obtained for an FG plate with various clamped and simply-supported boundary conditions. The closed form solutions obtained are very simple to be used in design purposes. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The effects of non-linearity, material property, and boundary conditions on various response quantities are studied and discussed. It is found that linear analysis is inadequate for analysis of simply-supported FG plates even in the small deflection range especially when thermal load is present. Also it is shown that bending—extension coupling can not be seen in response quantities of clamped FG plates. Also an exact solution is developed for the one-dimensional heat conduction equation with variable heat conductivity coefficient.


2021 ◽  
Vol 891 ◽  
pp. 116-121
Author(s):  
Aleksander Muc

In this paper optimal design of free vibrations for functionally graded plates is studied using the analytical methods. The analytical methods can be employed for the solution of six of 21 arbitrary boundary conditions (the combinations of clamped, simply supported and free). The influence of various models of porosity and forms of different reinforcements with nanoplatelets and carbon nanotubes are investigated, including variations of stiffness/density along the thickness of a plate. The analysis is carried out for the classical plate theory. Parametric studies illustrate the possibility of increasing natural frequencies and the necessity of implementing the optimization techniques to find the best solutions from the engineering point of view.


2017 ◽  
Vol 61 (4) ◽  
pp. 309 ◽  
Author(s):  
Vahid Tahouneh

In the present work, vibration characteristics of functionally graded (FG) sandwich rectangular plates reinforced by multiwalled carbon nanotubes (MWCNTs) resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation is used to evaluate the Young’s modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The mass density and Poisson’s ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. The proposed sandwich rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the sandwich plates are investigated.


Sign in / Sign up

Export Citation Format

Share Document