Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates

2017 ◽  
Vol 25 (5) ◽  
pp. 1115-1131 ◽  
Author(s):  
J. A. Rodríguez-González ◽  
C. Rubio-González ◽  
M. Jiménez-Mora ◽  
L. Ramos-Galicia ◽  
C. Velasco-Santos
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
C. Kostagiannakopoulou ◽  
E. Fiamegkou ◽  
G. Sotiriadis ◽  
V. Kostopoulos

The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tuan Anh Nguyen ◽  
Thi Thu Trang Bui

In this study, nanoclay I.30E and multiwalled carbon nanotubes (MWCNT) were hybridized with graphene oxide (GO) on Epikote 240 epoxy resin. Research results show that the hybridization between 0.5 wt.% GO with 1 or 3 wt.% nanoclay and 0.05 wt.% MWCNT has better mechanical properties and flame-retardant properties than the component materials. The combination of epoxy nanocomposite materials with flame-retardant additives such as nanoclay, MWCNT, and GO leads to improving flame-retardant and mechanical properties. Flame-retardant materials have no environmental problems and are nontoxic. Therefore, the flame-retardant additives studied in this work have great potential to become one of the promising flame-retardant hybrid materials. The study also showed that the result of the combination, the hybridization between the three components (nanoclay, MWCNT, and GO) synergized the mechanisms of fire resistance, creating insulating barriers, preventing objects from entering material exposed to heat and oxygen in the air.


2017 ◽  
Vol 50 (5) ◽  
pp. 403-418 ◽  
Author(s):  
H Zhang ◽  
YT Wei ◽  
ZR Kang ◽  
GZ Zhao ◽  
YQ Liu

In this study, graphene oxide (GO) and multiwalled carbon nanotubes (MWNTs) were incorporated into natural rubber (NR) to study the influence of each of these materials when substituted for carbon black (CB) on the structure and properties of NR/CB composites. The influence of stirring time on the composites used to prepare the masterbatch was also studied. Morphological observations revealed that the dispersion of the filler was improved by partially substituting GO and MWNTs for CB. Improvements in the static mechanical properties and dynamic properties were achieved when the concentration of GO or MWNTs was 1 phr. The highest modulus and hardness was found in the composites with a short stirring time used for the preparation of the masterbatch. When compared to CB-filled vulcanizates, composites with GO had a greater tensile strength and equivalent heat buildup, which is mainly attributed to the larger cross-link density. In this article, compared with the MWNTs, GO is more beneficial to the preparation of rubber composite with high mechanical properties and low heat buildup. This is mainly due to the common functional groups carboxyl, hydroxyl, and epoxide in the GO can improve the dispersion of GO within a matrix.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Gia Toai Truong ◽  
Jiho Kim ◽  
Kyoung-Kyu Choi

Multiwalled carbon nanotubes (MWCNTs) and nanoscaled electroless copper plating were introduced to enhance the mechanical properties of carbon fiber reinforced polymer (CFRP) composites in this study. The influence of multiwalled carbon nanotubes (MWCNTs) with weight fractions of 0.5–1.5% of epoxy resin on the mechanical properties of CFRP composites was investigated. The MWCNTs and epoxy resin was first mixed, prior to impregnating the carbon fiber fabrics. Electroless copper plating, a deposit method using simultaneous reactions in an aqueous (copper) solution without external electric power, was applied on the carbon fiber surface, and the effect was also investigated. The CFRP test specimens were fabricated by hand lay-up method, using one or three carbon fiber fabrics. The mechanical properties of the CFRP test specimens were derived by tensile tests according to KS M ISO 527-4. According to the morphology taken by SEM, the carbon fiber surface was significantly rough with copper ions. Because of this, the strength and ultimate strain of coated specimens increased up to 26.3 and 18.6% compared to noncoated specimens, respectively. In addition, as the MWCNTs amount increased, the ultimate strain of the composites also increased. In the case of CFRP test specimens using noncoated carbon fiber fabrics, the addition of 1.5% wt. MWCNTs increased the peak strength and ultimate strain of CFRP specimens up to 80.5 and 48.8%, respectively. Finally, the tensile stress-strain relationship of CFRP specimens was idealized as bilinear or trilinear response curves.


2018 ◽  
Vol 37 (22) ◽  
pp. 1346-1359 ◽  
Author(s):  
Julio Alejandro Rodríguez-González ◽  
Carlos Rubio-González ◽  
José de Jesús Ku-Herrera ◽  
Lourdes Ramos-Galicia ◽  
Carlos Velasco-Santos

This work reports the influence of seawater ageing on the mode I and mode II interlaminar fracture toughness ([Formula: see text] and [Formula: see text]) of prepreg-based unidirectional carbon fiber/epoxy laminates containing carbon nanofillers. Double cantilever beam and end notched flexure specimens were fabricated from composite laminates containing multiwalled carbon nanotubes and/or reduced graphene oxide at their middle plane interface. Experimental results showed that the addition of carbon nanofillers moderately increased the [Formula: see text] and [Formula: see text] propagation of composite laminates before and after their immersion in seawater with respect to the reference laminate under dry condition. For double cantilever beam and end notched flexure specimens aged in seawater, it was observed that [Formula: see text] and [Formula: see text] increased by 57% and 13% for specimens with multiwalled carbon nanotube/reduced graphene oxide hybrid combination, 39% and 4% for specimens with multiwalled carbon nanotubes and 53% and 8% for specimens with reduced graphene oxide respectively, as a consequence of the plasticization effect of seawater immersion on the matrix. Fracture surface examination by scanning electron microscopy revealed interlaminar failure associated to mode I and mode II delamination and toughening mechanisms produced by the multiwalled carbon nanotubes and reduced graphene oxide at delaminated regions of composite laminates.


2018 ◽  
Vol 52 (22) ◽  
pp. 3045-3052 ◽  
Author(s):  
JA Rodríguez-González ◽  
C Rubio-González

This work reports the effect of multiwalled carbon nanotubes on mixed-mode I/II interlaminar fracture toughness ([Formula: see text]) of unidirectional carbon fiber/epoxy composite laminates made by prepregs. The carbon fiber/epoxy laminates were fabricated in an autoclave with a previous deposition of different multiwalled carbon nanotube contents at their middle plane interface by spraying technique. Mixed-mode bending tests were conducted on carbon fiber/epoxy laminate specimens under different mixed-mode ratios. The results of mixed-mode bending tests showed that the addition of multiwalled carbon nanotubes can effectively improve the [Formula: see text] of carbon fiber/epoxy laminates. With a 0.2 wt.% multiwalled carbon nanotubes content in carbon fiber/epoxy laminates, the [Formula: see text] under mixed-mode ratios of 0.2, 0.5 and 0.8 increased by 25%, 12% and 19%, respectively. These results were explained in terms of the damage mechanisms observed at the fracture surfaces of tested specimens by scanning electron microscopy.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document