The introduction of hybrid walnut trees (Juglans nigra × regia cv. NG23) into cropland reduces soil mineral N content in autumn in southern France

2015 ◽  
Vol 90 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Kasaina Sitraka Andrianarisoa ◽  
Lydie Dufour ◽  
Séverine Bienaimé ◽  
Bernd Zeller ◽  
Christian Dupraz
1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


2021 ◽  
pp. 108434
Author(s):  
Bruno Chaves ◽  
Marciel Redin ◽  
Sandro José Giacomini ◽  
Raquel Schmatz ◽  
Joël Léonard ◽  
...  

1998 ◽  
Vol 7 (5-6) ◽  
pp. 553-567 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
A. KANGAS ◽  
T. MELA

Seven field trials at four research sites were carried out to study the effect of incorporation time of different plant materials on soil mineral N content during two successive seasons. Annual hairy vetch (Vicia villosa Roth), red clover (Trifolium pratense L.), westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) and straw residues of N-fertilized spring barley (Hordeum vulgare) were incorporated into the soil by ploughing in early September, late October and the following May, and by reduced tillage in May. Delaying incorporation of the green manure crop in autumn lessened the risk of N leaching. The higher the crop N and soil NO3-N content, the greater the risk of leaching. Incorporation in the following spring, which lessened the risk of N leaching as compared with early autumn ploughing, often had an adverse effect on the growth of the succeeding crop. After spring barley, the NO3-N content of the soil tended to be high, but the timing of incorporation did not have a marked effect on soil N. With exceptionally high soil mineral N content, N leaching was best inhibited by growing westerwold ryegrass in the first experimental year. ;


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


2005 ◽  
Vol 85 (3) ◽  
pp. 377-386 ◽  
Author(s):  
B J Zebarth ◽  
Y. Leclerc ◽  
G. Moreau ◽  
J B Sanderson ◽  
W J Arsenault ◽  
...  

Soil N supply is an important contributor of N to crop production; however, there is a lack of practical methods for routine estimation of soil N supply under field conditions. This study evaluated sampling just prior to topkill of whole potato plants that received no fertilizer N as a field bioassay of soil N supply. Three experiments were performed. In exp. 1, field trials were conducted to test if P and K fertilization, with no N fertilization, influenced plant biomass and N accumulation at topkill. In exp. 2, plant N accumulation at topkill in unfertilized plots was compared with mineral N accumulation in vegetation-free plots. In exp. 3, estimates of soil N supply were obtained from 56 sites from 1999 to 2003 using a survey approach where plant N accumulation at topkill, and soil mineral N content to 30-cm depth at planting and at tuber harvest were measured. Application of P and K fertilizer had no significant effect on plant N accumulation in two trials, and resulted in a small increase in plant N accumulation in a third trial. Zero fertilizer plots, which can be more readily established in commercial potato fields, can therefore be used instead of zero fertilizer N plots to estimate soil N supply. In exp. 2, estimates of soil N supply were generally comparable between plant N accumulation at topkill and maximum soil NO3-N accumulation in vegetation-free plots; therefore, the plant bioassay approach is a valid means of estimation of plant available soil N supply. Plant N accumulation at topkill in exp. 3 averaged 86 kg N ha-1, and ranged from 26 to 162 kg N ha-1. Plant N accumulation was higher for sites with a preceding forage crop compared with a preceding cereal or potato crop. Plant N accumulation was generally higher in years with warmer growing season temperatures. Soil NO3-N content at harvest in exp. 3 was less than 20 kg N ha-1, indicating that residual soil mineral N content was low at the time of plant N accumulation measurement. Soil NO3-N content at planting was generally small relative to plant N accumulation, indicating that soil N supply in this region is controlled primarily by growing season soil N mineralization. Use of a plant bioassay approach provides a practical means to quantify climate, soil and management effects on plant available soil N supply in potato production. Key words: Solanum tuberosum, nitrate, ammonium, N mineralization, plant N accumulation


2001 ◽  
Vol 10 (3) ◽  
pp. 197-208 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
C. ERIKSSON ◽  
M. RÄKKÖLÄINEN

Cover crops can be used to reduce leaching and erosion, introduce variability into crop rotation and fix nitrogen (N) for use by the main crops. In Finland, undersowing is a suitable method for establishing cover crops in cereal cropping. The effect of annual undersowing on cereal grain yield and soil mineral N content in spring was studied at two sites. Red clover (Trifolium pratense L.), white clover (Trifolium repens L.), a mixture of red clover and meadow fescue (Festuca pratensis Huds.), and westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) were undersown in spring cereals in the same plots in six successive seasons, and their effects on cereal yield were estimated. Annual undersowing with clovers increased, and undersowing with westerwold ryegrass decreased cereal grain yields. The grain yield was only slightly lower with a mixture of red clover and meadow fescue than with red clover alone. Westerwold ryegrass did not affect soil mineral N content in spring and the increase attributable to clovers was small. The mixture of red clover and meadow fescue affected similarly to pure red clover. Soil fertility was not notably improved during six years of undersowing according to grain yield two years later.


Soil Research ◽  
1993 ◽  
Vol 31 (5) ◽  
pp. 597 ◽  
Author(s):  
IJ Rochester ◽  
GA Constable ◽  
DA Macleod

Mineral N (nitrate and ammonium) contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content; the decline could not be accounted for by crop N uptake alone. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil microbiomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. We suggest that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28 and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop.


2004 ◽  
Vol 84 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Terence P. McGonigle ◽  
Eric G. Beauchamp

We investigated corn grain yield responses to early-season soil mineral N and plant N content following application of a variety of manures in Eastern Canada. Liquid cattle, liquid swine, straw-bedded poultry, wood-bedded poultry, and solid cattle manures were each applied at 100, 200, and 300 kg N ha-1 prior to planting corn in a field experiment repeated 3 consecutive years. Additional treatments were urea applied at 50, 100, and 150 kg N ha-1, and liquid cattle and solid cattle manures at 200 kg N ha-1 with bedding amendments added to the field before manure spreading. Control plots received no manure, no urea, and no bedding amendment. Part of the ammonium-N applied in manures and a portion of that added as urea was volatilized or immobilized shortly after application and was not recovered as soil mineral N at planting. Across all treatments, soil mineral N in the top 30 cm on Jun. 10 in each year gave a better relationship to corn grain yield than soil mineral N measured at planting or on Jul. 10. Inclusion of data for plant N content on Jun. 10 or Jul. 10 did not improve the regressions. With remarkable consistency across all manure types, across manure rates, and over the three years, similar values for soil mineral N on Jun. 10 in plots given manure at planting had yields typically 0.5-1.0 t ha-1 greater than those in plots given urea at planting. This result indicates that mineralization of N from manure after the time of sidedress N and undetected as soil mineral N on Jun. 10 can contribute to yield increases of corn. Recent manure history should be considered when using soil tests for mineral N that are taken 3-4 wk after planting to calculate sidedress N fertilization. Key words: Sidedress, soil test, slurry, solid, cattle, swine, poultry


Sign in / Sign up

Export Citation Format

Share Document