scholarly journals Timing incorporation of different green manure crops to minimize the risk of nitrogen leaching

1998 ◽  
Vol 7 (5-6) ◽  
pp. 553-567 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
A. KANGAS ◽  
T. MELA

Seven field trials at four research sites were carried out to study the effect of incorporation time of different plant materials on soil mineral N content during two successive seasons. Annual hairy vetch (Vicia villosa Roth), red clover (Trifolium pratense L.), westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) and straw residues of N-fertilized spring barley (Hordeum vulgare) were incorporated into the soil by ploughing in early September, late October and the following May, and by reduced tillage in May. Delaying incorporation of the green manure crop in autumn lessened the risk of N leaching. The higher the crop N and soil NO3-N content, the greater the risk of leaching. Incorporation in the following spring, which lessened the risk of N leaching as compared with early autumn ploughing, often had an adverse effect on the growth of the succeeding crop. After spring barley, the NO3-N content of the soil tended to be high, but the timing of incorporation did not have a marked effect on soil N. With exceptionally high soil mineral N content, N leaching was best inhibited by growing westerwold ryegrass in the first experimental year. ;

2019 ◽  
Vol 56 (2) ◽  
pp. 239-254 ◽  
Author(s):  
Tanka P. Kandel ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
Alexandre C. Rocateli

AbstractThe aim of this study was to compare the effects of cowpea green manure and inorganic nitrogen (N) fertilizers on yields of winter wheat and soil emissions of nitrous oxide (N2O). The comparisons included cowpea grown solely as green manure where all biomass was terminated at maturity by tillage, summer fallow treatments with 90 kg N ha−1 as urea (90-N), and no fertilization (control) at planting of winter wheat. Fluxes of N2O were measured by closed chamber methods after soil incorporation of cowpea in autumn (October–November) and harvesting of winter wheat in summer (June–August). Growth and yields of winter wheat and N concentrations in grain and straw were also measured. Cowpea produced 9.5 Mg ha−1 shoot biomass with 253 kg N ha−1 at termination. Although soil moisture was favorable for denitrification after soil incorporation of cowpea biomass, low concentrations of soil mineral N restricted emissions of N2O from cowpea treatment. However, increased concentrations of soil mineral N and large rainfall-induced emissions were recorded from the cowpea treatment during summer. Growth of winter wheat, yield, and grain N concentrations were lowest in response to cowpea treatment and highest in 90-N treatment. In conclusion, late terminated cowpea may reduce yield of winter wheat and increase emissions of N2O outside of wheat growing seasons due to poor synchronization of N mineralization from cowpea biomass with N-demand of winter wheat.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


1989 ◽  
Vol 37 (2) ◽  
pp. 129-141 ◽  
Author(s):  
J.J. Neeteson ◽  
H.J.C. Zwetsloot

A statistical analysis was performed to investigate if, and to what extent, the response of sugarbeet and potatoes to fertilizer N depended on the amount of mineral N already present in the soil, soil type, and prior application of organic manures. For this purpose the results of 150 field trials with sugarbeet and 98 with potatoes were used. The analysis was focussed on the within-block stratum of variation in yield, where regression models were fitted to describe the response to N. For both sugarbeet and potatoes the best fit was obtained when not only fertilizer N was taken into account, but also soil mineral N, soil type and prior application of organic manures. The response to fertilizer N was weaker as the amount of soil mineral N was larger. The optimum amount of fertilizer N plus soil mineral N required was larger on sandy soils than on loam and clay soils. The difference was about 20 kg N/ha for sugarbeet and 100 kg N/ha for potatoes. When organic manures were applied prior to the application of fertilizer N, the optimum for both sugarbeet and potatoes was 15-50 N/ha lower than without application of organic manures. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2015 ◽  
Vol 90 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Kasaina Sitraka Andrianarisoa ◽  
Lydie Dufour ◽  
Séverine Bienaimé ◽  
Bernd Zeller ◽  
Christian Dupraz

1999 ◽  
Vol 8 (4-5) ◽  
pp. 423-440 ◽  
Author(s):  
L. PIETOLA ◽  
R. TANNI ◽  
P. ELONEN

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 1993–1996 on loamy clay soil. Carry over effect of the N fertilization rates (0–180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120–150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of PGR. The yields of oats were increased in 1995–96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60–90 kg ha-1 ), independent of PGRs. According to soil mineral N contents, N leaching risk is significant (15–35 kg ha-1 ) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents. ;


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


1983 ◽  
Vol 19 (1) ◽  
pp. 91-101 ◽  
Author(s):  
D. M. Oosterhuis ◽  
J. Chipamaunga ◽  
G. C. Bate

SUMMARYThree levels of nitrogen (N) were applied to cotton grown in irrigated field trials at two locations in Zimbabwe in 1978. Dry matter (DM) production, total uptake and distribution of N among vegetative and reproductive components, and soil mineral-N contents were recorded about every 14 days. About 60% of total DM was produced, and 40% of total N taken up, between 10 and 16 weeks after sowing. Most N was present in vegetative parts, particularly leaves and branches, during early growth but, later, it accumulated in buds, flowers and bolls. At maturity, seeds and lint contained 42% of total above-ground plant N. N concentrations were similar in sympodial and mainstem leaves, petioles and branches. Inorganic N applied at sowing had little effect on plant N, but when given after 10 weeks it increased the N content of leaves, stems, branches, petioles and bolls.


Sign in / Sign up

Export Citation Format

Share Document