Analysis of oscillator phase noise effect on high order QAM links

2020 ◽  
Vol 105 (1) ◽  
pp. 1-6
Author(s):  
Cagri Bicici ◽  
Ibrahim Ozdur ◽  
Osman Cerezci
2018 ◽  
Vol 71 (4) ◽  
pp. 805-820 ◽  
Author(s):  
Bing Xu ◽  
Lei Dou

Oscillator phase noise has a negative effect on the tracking performance of Global Navigation Satellite System (GNSS) receivers. To provide GNSS software receivers with real test environments, this paper proposes a method to simulate the GNSS Intermediate Frequency (IF) signal, taking the oscillator phase noise effect into consideration. The oscillator parameters are first measured via a pseudolite transmitter and receiver system. According to the measured oscillator parameters, an oscillator-induced frequency fluctuation is then generated, and added to the digital IF signal. Further simulation experiments are conducted that attempt to measure the oscillator phase noise effect on a second-order Phase Lock Loop (PLL) performance. Results indicate that the IF signal simulator considering the oscillator phase noise is able to provide software receivers with real signal dynamics, helping to evaluate the performance of signal processing algorithms on a software platform.


2012 ◽  
Vol 496 ◽  
pp. 527-533
Author(s):  
Na Bai ◽  
Hong Gang Zhou ◽  
Qiu Lei Wu ◽  
Chun Yu Peng

In this paper, ring oscillator phase noise caused by power supply noise (PSN) with deterministic frequency is analyzed. Results show that phase noise caused by deterministic noise is only an impulse series. Compared with the jitter caused by PSN, the phase noise caused by PSN with deterministic frequency contributes considerably less to total phase noise performance. To verify the analysis method, a CMOS ring oscillator is designed and fabricated using SMIC 0.13 µm CMOS process. Comparisons between the analytical results and measurements prove the accuracy of the proposed method


Sign in / Sign up

Export Citation Format

Share Document