Polyhedral study of the maximum common induced subgraph problem

2011 ◽  
Vol 199 (1) ◽  
pp. 77-102 ◽  
Author(s):  
Breno Piva ◽  
Cid Carvalho de Souza
2021 ◽  
Vol 37 (3) ◽  
pp. 839-866
Author(s):  
Wei Zheng ◽  
Hajo Broersma ◽  
Ligong Wang

AbstractMotivated by several conjectures due to Nikoghosyan, in a recent article due to Li et al., the aim was to characterize all possible graphs H such that every 1-tough H-free graph is hamiltonian. The almost complete answer was given there by the conclusion that every proper induced subgraph H of $$K_1\cup P_4$$ K 1 ∪ P 4 can act as a forbidden subgraph to ensure that every 1-tough H-free graph is hamiltonian, and that there is no other forbidden subgraph with this property, except possibly for the graph $$K_1\cup P_4$$ K 1 ∪ P 4 itself. The hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs, as conjectured by Nikoghosyan, was left there as an open case. In this paper, we consider the stronger property of pancyclicity under the same condition. We find that the results are completely analogous to the hamiltonian case: every graph H such that any 1-tough H-free graph is hamiltonian also ensures that every 1-tough H-free graph is pancyclic, except for a few specific classes of graphs. Moreover, there is no other forbidden subgraph having this property. With respect to the open case for hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs we give infinite families of graphs that are not pancyclic.


Networks ◽  
2011 ◽  
Vol 58 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Claudio Arbib ◽  
Martine Labbé ◽  
Mara Servilio
Keyword(s):  

2016 ◽  
Vol 210 ◽  
pp. 223-234
Author(s):  
Manoel Campêlo ◽  
Victor A. Campos ◽  
Ricardo C. Corrêa ◽  
Diego Delle Donne ◽  
Javier Marenco ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 105
Author(s):  
Serafino Cicerone

Cicerone and Di Stefano defined and studied the class of k-distance-hereditary graphs, i.e., graphs where the distance in each connected induced subgraph is at most k times the distance in the whole graph. The defined graphs represent a generalization of the well known distance-hereditary graphs, which actually correspond to 1-distance-hereditary graphs. In this paper we make a step forward in the study of these new graphs by providing characterizations for the class of all the k-distance-hereditary graphs such that k<2. The new characterizations are given in terms of both forbidden subgraphs and cycle-chord properties. Such results also lead to devise a polynomial-time recognition algorithm for this kind of graph that, according to the provided characterizations, simply detects the presence of quasi-holes in any given graph.


2018 ◽  
Vol 36 (3) ◽  
pp. 129-139
Author(s):  
Behnaz Tolue

In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1)\cap H_2\neq 1$ or $St_{G}(H_2)\cap H_1\neq 1$. Its planarity is discussed whenever $G$ is an abelian group, $p$-group, nilpotent, supersoluble or soluble group. Finally, the induced subgraph of stable subgroup graph with vertex set whole non-normal subgroups is considered and its planarity is verified for some certain groups.


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


10.37236/976 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Tomás Feder ◽  
Pavol Hell ◽  
Wing Xie

Each $m$ by $m$ symmetric matrix $M$ over $0, 1, *$, defines a partition problem, in which an input graph $G$ is to be partitioned into $m$ parts with adjacencies governed by $M$, in the sense that two distinct vertices in (possibly equal) parts $i$ and $j$ are adjacent if $M(i,j)=1$, and nonadjacent if $M(i,j)=0$. (The entry $*$ implies no restriction.) We ask which matrix partition problems admit a characterization by a finite set of forbidden induced subgraphs. We prove that matrices containing a certain two by two diagonal submatrix $S$ never have such characterizations. We then develop a recursive technique that allows us (with some extra effort) to verify that matrices without $S$ of size five or less always have a finite forbidden induced subgraph characterization. However, we exhibit a six by six matrix without $S$ which cannot be characterized by finitely many induced subgraphs. We also explore the connection between finite forbidden subgraph characterizations and related questions on the descriptive and computational complexity of matrix partition problems.


Sign in / Sign up

Export Citation Format

Share Document