scholarly journals Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene

2014 ◽  
Vol 105 (6) ◽  
pp. 1033-1048 ◽  
Author(s):  
Sebastian Gnat ◽  
Magdalena Wójcik ◽  
Sylwia Wdowiak-Wróbel ◽  
Michał Kalita ◽  
Aneta Ptaszyńska ◽  
...  
1999 ◽  
Vol 65 (7) ◽  
pp. 2994-3000 ◽  
Author(s):  
Mary Ann Bruns ◽  
John R. Stephen ◽  
George A. Kowalchuk ◽  
James I. Prosser ◽  
Eldor A. Paul

ABSTRACT Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO populations were also evaluated with soils from fertilized microplots within the successional treatments. Population structures were characterized by PCR amplification of microbial community DNA with group-specific 16S rRNA gene (rDNA) primers, cloning of PCR products and clone hybridizations with group-specific probes, phylogenetic analysis of partial 16S rDNA sequences, and denaturing gradient gel electrophoresis (DGGE) analysis. Population sizes were estimated by using most-probable-number (MPN) media containing varied concentrations of ammonium sulfate. Tilled soils contained higher numbers than did native soils of culturable AAOs that were less sensitive to different ammonium concentrations in MPN media. Compared to sequences from native soils, partial 16S rDNA sequences from tilled soils were less diverse and grouped exclusively within Nitrosospira cluster 3. Native soils yielded sequences representing three different AAO clusters. Probes forNitrosospira cluster 3 hybridized with DGGE blots from tilled and fertilized successional soils but not with blots from native or unfertilized successional soils. Hybridization results thus suggested a positive association between the Nitrosospiracluster 3 subgroup and soils amended with inorganic N. DGGE patterns for soils sampled from replicated plots of each treatment were nearly identical for tilled and native soils in both sampling years, indicating spatial and temporal reproducibility based on treatment.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 429-429
Author(s):  
I.-M. Lee ◽  
K. D. Bottner ◽  
P. N. Miklas ◽  
M. A. Pastor-Corrales

During 2003, a new disease, dry bean phyllody (DBPh), was observed in the Columbia Basin of Washington in dry bean (Phaseolus vulgaris L.) cultivars of Andean origin grown in Mattawa and Paterson, WA that caused great reduction in dry bean production. Symptoms of DBPh became apparent during mid-to-late pod development and were characterized by leafy petals (phyllody) and aborted seed pods resembling thin, twisted, and corrugated leaf-like structures. Deformed sterile pods that were small, sickle-shaped, upright, and leathery were also observed. The infected plants generally exhibited chlorosis, stunting, or bud proliferation from leaf axils. Symptoms of DBPh were indicative of possible infection by phytoplasmas. Restriction fragment length polymorphism (RFLP) and phylogenetic analyses of amplified 16S rDNA sequences were used for phytoplasma identification. Four symptomatic bean plants were analyzed and tested positive for phytoplasma infection on the basis of results of initial polymerase chain reaction (PCR) and subsequent nested-PCR amplifications (2). RFLP analyses of 16S rDNA sequences with restriction enzymes, MseI, AluI, HhaI, RsaI, and HpaII indicated that the phytoplasma strains associated with DBPh belonged to the clover proliferation group (16SrVI) subgroup A (16SrVI-A) (2). This subgroup currently consists of three members, clover proliferation (CP; GenBank Accession No. AY500130), potato witches'-broom (PWB; GenBank Accession No. AY500818), and vinca virescence (VR; GenBank Accession No. AY500817), a strain of beet leafhopper-transmitted virescence agent (BLTVA) phytoplasmas (1,2). The taxonomic affiliations of the DBPh phytoplasma strains were confirmed by phylogenetic analysis of cloned 16S rRNA gene sequences (GenBank Accession Nos. DBPh2, AY496002; DBPh3, AY496003). Among the existing members of subgroup 16SrVI-A, the four DBPh strains were closely related to the VR strain with 99.7% 16S rDNA sequence homology and to the CP strain with 99.2% sequence homology. To gain further evidence on the role of 16SrVI-A phytoplasma strains in DBPh disease, a modified test of Koch's postulates was conducted. Infected tissue from one phytoplasma-positive dry bean sample was grafted onto three Pinto UI-114 bean seedlings in the greenhouse. Within 60 days, the bean seedlings exhibited corrugated leaf-like structures from aborted seedpods, a lack of flower formation, general chlorosis, and stunting similar to the original diseased plants. The lower leaves of the inoculated bean plants became epinastic and leathery. The transmitted phytoplasma was detected in each of the grafted symptomatic seedlings, and the RFLP patterns of its 16S rRNA gene sequences were identical to those of the phytoplasmas in the scions. A high correlation between the presence of disease symptoms and the presence of subgroup 16SrVI-A phytoplasmas in the bean plants suggests that these phytoplasmas play an etiological role in DBPh disease. To our knowledge, these findings provide the first confirmed case of phytoplasma-associated DBPh in the United States. References: (1) D. A. Golino et al. Plant Dis. 73:850, 1989. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998.


2015 ◽  
Author(s):  
Warrick Nelson ◽  
Sandrine Eveillard ◽  
Marie-Pierre Dubrana ◽  
Joseph Bové

“Candidatus Liberibacter africanus” (Laf) has long been recognised as a causal agent of the devastating citrus disease huanglongbing (HLB) or citrus greening. This species is currently restricted to Africa, the Arabian Peninsula and some Indian Ocean islands and vectored by the African citrus psyllid, Trioza erytreae. Blotchy mottle on citrus leaves is characteristic of the disease. Somewhat similar symptoms in the Rutaceous tree Calodendrum capensis (Cape Chestnut) resulted in the discovery of Laf outside commercial citrus crops in South Africa. This was classed as a subspecies of Laf (capensis, hence LafC). In subsequent surveys of both commercial citrus crops and Calodendrum, both natural and ornamental specimens, LafC was not found in the citrus crop, nor has Laf been found in C. capensis. HLB was reported from Madagascar in 1968 but no sequences from this source have so far been published. Until fairly recently, only the reference 16S rRNA gene sequences of Laf (L22533) and LafC (AF137368) had been deposited in GenBank. Both of these reference sequences contain a number of unresolved nucleotides. Resolving these nucleotide positions by aligning against more recently available sequences, it becomes evident that these unresolved positions represent one percentage point difference in similarity between Laf and LafC. The originally reported 97.4% similarity is therefore incorrect based on this new information. Recalculating the similarity on the full length 16S rDNA sequence results in 99.54% similarity, a value too high to justify a subspecies status. LafC should therefore be reduced to that of a haplotype of Laf. Further, the six 16S rRNA gene sequences currently available in GenBank identified as the species Laf separate into 2 haplotype groups. The 3 haplotypes of Laf are therefore LafA designated as the first accession sequenced (L22533), LafC for the former capensis subspecies and to recognise the prior use of this term, and LafB for the third haplotype not previously recognised. Thus the cryptic presence of 3 haplotypes is revealed by this review of the Laf 16S rDNA sequences.


Author(s):  
WINDA AYU SYAFITRI ◽  
FITRIA NINGSIH ◽  
PUTRI PRATIWI SETYANINGSIH ◽  
MAZYTHA KINANTI RACHMANIA ◽  
DHIAN CHITRA AYU FITRIA SARI ◽  
...  

Abstract. Syafitri WA, Ningsih F, Setyaningsih PP, Rachmania MK, Sari DCAF, Yabe S, Yokota A, Oetari A, Sjamsuridzal W. 2019. Screening for amylolytic activity and characterization of thermophilic Actinobacteria isolated from a geothermal area in West Java, Indonesia. Biodiversitas 20: 1929-1938. In this study, we describe the screening for amylolytic activity of 17 thermophilic Actinobacteria isolates obtained from the soil of Cisolok geysers, a geothermal area in West Java, Indonesia. All isolates were screened for amylolytic activity by the starch-agar plate method at various temperatures. The results showed that all of isolates were able to grow at 45oC. The growth abilities of the isolates grown in ISP 1 medium varied at temperatures from 45 to 60oC. Fifteen of the 17 isolates showed amylolytic activity at 45oC, 13 showed such activity at 50oC, and four showed activity at 55oC. Only three isolates, designated SL1-2-R-2, SL1-2-R-3, and SL1-2-R-4, showed growth and amylolytic activity at 60oC. These three isolates were selected for molecular identification. The nearly full-length of 16S rRNA gene sequences data showed that these three isolates have a similarity of 99.93-100% with Actinomadura keratinilytica WCC-2265T and of 98.74-98.91% with A. miaoliensis BC 44T-5T. Phylogenetic tree shows that all three isolates are clustered together in a monophyletic group with the type strain of A. keratinilytica WCC-2265T as their most closely related species, with 100% bootstrap support. Based on sequencing of the 16S rRNA gene, phylogenetic comparison, and phenotypic characterization, the three isolates were identified as A. keratinilytica.


1998 ◽  
Vol 64 (11) ◽  
pp. 4333-4339 ◽  
Author(s):  
Daniel H. Buckley ◽  
Joseph R. Graber ◽  
Thomas M. Schmidt

ABSTRACT Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeotathat is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilicCrenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.


2003 ◽  
Vol 185 (9) ◽  
pp. 2901-2909 ◽  
Author(s):  
Corinne Teyssier ◽  
Hélène Marchandin ◽  
Michèle Siméon De Buochberg ◽  
Michel Ramuz ◽  
Estelle Jumas-Bilak

ABSTRACT Ochrobactrum intermedium is an opportunistic human pathogen belonging to the alpha 2 subgroup of proteobacteria. The 16S rDNA sequences of nine O. intermedium isolates from a collection of clinical and environmental isolates exhibited a 46-bp insertion at position 187, which was present in only one sequence among the 82 complete or partial 16S rDNA sequences of Ochrobactrum spp. available in data banks. Reverse transcription-PCR experiments showed that the 46-bp insertion remained in the 16S rRNA. The inserted sequence folded into a stem-loop structure, which took place in and prolonged helix H184 of the 16S rRNA molecule. Helix H184 has been described as conserved in length among eubacteria, suggesting the idiosyncratic character of the 46-bp insertion. Pulsed-field gel electrophoresis experiments showed that seven of the clinical isolates carrying the 46-bp insertion belonged to the same clone. Insertion and rrn copy numbers were determined by hybridization and I-CeuI digestion. In the set of clonal isolates, the loss of two insertion copies revealed the deletion of a large genomic fragment of 150 kb, which included one rrn copy; deletion occurred during the in vivo evolution of the clone. Determination of the rrn skeleton suggested that the large genomic rearrangement occurred during events involving homologous recombination between rrn copies. The loss of insertion copies suggested a phenomenon of concerted evolution among heterogeneous rrn copies.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 72-80
Author(s):  
Umesh Prasad Shrivastava

The rhizobacteria were isolated from rhizosphere of rice plant of different fields of 4 districts of Nepal and 5 districts of Bihar and Uttar Pradesh, adjoining states of India with Nepal. The DGGE analysis was performed for diversity analysis. For the construction of dendrogram, 16S rRNA gene was amplified by two different sets of primers. The DGGE ladder consisting of PCR amplified products of nine pure bacterial cultures were obtained. The first DGGE ladder was prepared by 400 bp fragment of 16S rDNA with GC clamp and the second DGGE ladder was prepared with 200 bp fragment of 16S rDNA with GC clamp. The perpendicular DGGE of these amplicons based on their melting behavior clearly demonstrated separation of different isolates. The 16S rDNA fragment amplified with primer set of V2-V3 regions with GC clamp showed separation between 40-60% of denaturant. The DGGE profile based on primer set F352T and 519r for various bacteria present in soil samples of 5 districts of India and 4 districts of Nepal revealed that the number of bands which might be specific for diazotrophic isolates varied from 2 to 11. The dendrogram constructed based on DGGE profile of various samples of 5 districts of India and 4 districts of Nepal showed that all the samples could be clustered in nine groups with 58-96% similarity to each other. Among all these 37 samples, only Var-4 and Var-5 showed 100% similarity, no other samples from any site showed 100% similarity. Int. J. Appl. Sci. Biotechnol. Vol 5(1): 72-80


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 754-759 ◽  
Author(s):  
Paulina Corral ◽  
Angela Corcelli ◽  
Antonio Ventosa

An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).


Sign in / Sign up

Export Citation Format

Share Document