scholarly journals Atypical 16S rRNA Gene Copies in Ochrobactrum intermedium Strains Reveal a Large Genomic Rearrangement by Recombination between rrn Copies

2003 ◽  
Vol 185 (9) ◽  
pp. 2901-2909 ◽  
Author(s):  
Corinne Teyssier ◽  
Hélène Marchandin ◽  
Michèle Siméon De Buochberg ◽  
Michel Ramuz ◽  
Estelle Jumas-Bilak

ABSTRACT Ochrobactrum intermedium is an opportunistic human pathogen belonging to the alpha 2 subgroup of proteobacteria. The 16S rDNA sequences of nine O. intermedium isolates from a collection of clinical and environmental isolates exhibited a 46-bp insertion at position 187, which was present in only one sequence among the 82 complete or partial 16S rDNA sequences of Ochrobactrum spp. available in data banks. Reverse transcription-PCR experiments showed that the 46-bp insertion remained in the 16S rRNA. The inserted sequence folded into a stem-loop structure, which took place in and prolonged helix H184 of the 16S rRNA molecule. Helix H184 has been described as conserved in length among eubacteria, suggesting the idiosyncratic character of the 46-bp insertion. Pulsed-field gel electrophoresis experiments showed that seven of the clinical isolates carrying the 46-bp insertion belonged to the same clone. Insertion and rrn copy numbers were determined by hybridization and I-CeuI digestion. In the set of clonal isolates, the loss of two insertion copies revealed the deletion of a large genomic fragment of 150 kb, which included one rrn copy; deletion occurred during the in vivo evolution of the clone. Determination of the rrn skeleton suggested that the large genomic rearrangement occurred during events involving homologous recombination between rrn copies. The loss of insertion copies suggested a phenomenon of concerted evolution among heterogeneous rrn copies.

2014 ◽  
Vol 105 (6) ◽  
pp. 1033-1048 ◽  
Author(s):  
Sebastian Gnat ◽  
Magdalena Wójcik ◽  
Sylwia Wdowiak-Wróbel ◽  
Michał Kalita ◽  
Aneta Ptaszyńska ◽  
...  

1998 ◽  
Vol 64 (11) ◽  
pp. 4333-4339 ◽  
Author(s):  
Daniel H. Buckley ◽  
Joseph R. Graber ◽  
Thomas M. Schmidt

ABSTRACT Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeotathat is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilicCrenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.


1999 ◽  
Vol 65 (7) ◽  
pp. 2994-3000 ◽  
Author(s):  
Mary Ann Bruns ◽  
John R. Stephen ◽  
George A. Kowalchuk ◽  
James I. Prosser ◽  
Eldor A. Paul

ABSTRACT Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO populations were also evaluated with soils from fertilized microplots within the successional treatments. Population structures were characterized by PCR amplification of microbial community DNA with group-specific 16S rRNA gene (rDNA) primers, cloning of PCR products and clone hybridizations with group-specific probes, phylogenetic analysis of partial 16S rDNA sequences, and denaturing gradient gel electrophoresis (DGGE) analysis. Population sizes were estimated by using most-probable-number (MPN) media containing varied concentrations of ammonium sulfate. Tilled soils contained higher numbers than did native soils of culturable AAOs that were less sensitive to different ammonium concentrations in MPN media. Compared to sequences from native soils, partial 16S rDNA sequences from tilled soils were less diverse and grouped exclusively within Nitrosospira cluster 3. Native soils yielded sequences representing three different AAO clusters. Probes forNitrosospira cluster 3 hybridized with DGGE blots from tilled and fertilized successional soils but not with blots from native or unfertilized successional soils. Hybridization results thus suggested a positive association between the Nitrosospiracluster 3 subgroup and soils amended with inorganic N. DGGE patterns for soils sampled from replicated plots of each treatment were nearly identical for tilled and native soils in both sampling years, indicating spatial and temporal reproducibility based on treatment.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 429-429
Author(s):  
I.-M. Lee ◽  
K. D. Bottner ◽  
P. N. Miklas ◽  
M. A. Pastor-Corrales

During 2003, a new disease, dry bean phyllody (DBPh), was observed in the Columbia Basin of Washington in dry bean (Phaseolus vulgaris L.) cultivars of Andean origin grown in Mattawa and Paterson, WA that caused great reduction in dry bean production. Symptoms of DBPh became apparent during mid-to-late pod development and were characterized by leafy petals (phyllody) and aborted seed pods resembling thin, twisted, and corrugated leaf-like structures. Deformed sterile pods that were small, sickle-shaped, upright, and leathery were also observed. The infected plants generally exhibited chlorosis, stunting, or bud proliferation from leaf axils. Symptoms of DBPh were indicative of possible infection by phytoplasmas. Restriction fragment length polymorphism (RFLP) and phylogenetic analyses of amplified 16S rDNA sequences were used for phytoplasma identification. Four symptomatic bean plants were analyzed and tested positive for phytoplasma infection on the basis of results of initial polymerase chain reaction (PCR) and subsequent nested-PCR amplifications (2). RFLP analyses of 16S rDNA sequences with restriction enzymes, MseI, AluI, HhaI, RsaI, and HpaII indicated that the phytoplasma strains associated with DBPh belonged to the clover proliferation group (16SrVI) subgroup A (16SrVI-A) (2). This subgroup currently consists of three members, clover proliferation (CP; GenBank Accession No. AY500130), potato witches'-broom (PWB; GenBank Accession No. AY500818), and vinca virescence (VR; GenBank Accession No. AY500817), a strain of beet leafhopper-transmitted virescence agent (BLTVA) phytoplasmas (1,2). The taxonomic affiliations of the DBPh phytoplasma strains were confirmed by phylogenetic analysis of cloned 16S rRNA gene sequences (GenBank Accession Nos. DBPh2, AY496002; DBPh3, AY496003). Among the existing members of subgroup 16SrVI-A, the four DBPh strains were closely related to the VR strain with 99.7% 16S rDNA sequence homology and to the CP strain with 99.2% sequence homology. To gain further evidence on the role of 16SrVI-A phytoplasma strains in DBPh disease, a modified test of Koch's postulates was conducted. Infected tissue from one phytoplasma-positive dry bean sample was grafted onto three Pinto UI-114 bean seedlings in the greenhouse. Within 60 days, the bean seedlings exhibited corrugated leaf-like structures from aborted seedpods, a lack of flower formation, general chlorosis, and stunting similar to the original diseased plants. The lower leaves of the inoculated bean plants became epinastic and leathery. The transmitted phytoplasma was detected in each of the grafted symptomatic seedlings, and the RFLP patterns of its 16S rRNA gene sequences were identical to those of the phytoplasmas in the scions. A high correlation between the presence of disease symptoms and the presence of subgroup 16SrVI-A phytoplasmas in the bean plants suggests that these phytoplasmas play an etiological role in DBPh disease. To our knowledge, these findings provide the first confirmed case of phytoplasma-associated DBPh in the United States. References: (1) D. A. Golino et al. Plant Dis. 73:850, 1989. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998.


1998 ◽  
Vol 36 (10) ◽  
pp. 2973-2981 ◽  
Author(s):  
Anna Sander ◽  
Michael Ruess ◽  
Stefan Bereswill ◽  
Markus Schuppler ◽  
Bernhard Steinbrueckner

Seventeen isolates of Bartonella henselae from the region of Freiburg, Germany, obtained from blood cultures of domestic cats, were examined for their genetic heterogeneity. On the basis of different DNA fingerprinting methods, including pulsed-field gel electrophoresis (PFGE), enterobacterial repetitive intergenic consensus (ERIC)-PCR, repetitive extragenic palindromic (REP) PCR, and arbitrarily primed (AP)-PCR, three different variants were identified among the isolates (variants I to III). Variant I included 6 strains, variant II included 10 strains, and variant III included only one strain. By all methods used, the isolates could be clearly distinguished from the type strain, Houston-1, which was designated variant IV. A previously published type-specific amplification of 16S rDNA differentiated two types of the B. henselaeisolates (16S rRNA types 1 and 2). The majority of the isolates (16 of 17), including all variants I and II, were 16S rRNA type 2. Only one isolate (variant III) and the Houston-1 strain (variant IV) comprised the 16S rRNA type 1. Comparison of the 16S rDNA sequences from one representative strain from each of the three variants (I to III) confirmed the results obtained by 16S rRNA type-specific PCR. The sequences from variant I and variant II were identical, whereas the sequence of variant III differed in three positions. All methods applied in this study allowed subtyping of the isolates. PFGE and ERIC-PCR provided the highest discriminatory potential for subtypingB. henselae strains, whereas AP-PCR with the M13 primer showed a very clear differentiation between the four variants. Our results suggest that the genetic heterogeneity of B. henselae strains is high. The methods applied were found useful for typing B. henselae isolates, providing tools for epidemiological and clinical follow-up studies.


Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1493-1501 ◽  
Author(s):  
Hélène Marchandin ◽  
Corinne Teyssier ◽  
Michèle Siméon de Buochberg ◽  
Hélène Jean-Pierre ◽  
Christian Carriere ◽  
...  

Among the seven species characterized within the genus Veillonella, three (Veillonella dispar, Veillonella parvula and Veillonella atypica) have so far been isolated from human flora and during infectious processes. Sequencing and analysis of 16S rDNA (rrs) has been described as the best method for identification of Veillonella strains at the species level since phenotypic characteristics are unable to differentiate between species. rrs sequencing for the three species isolated from humans showed more than 98 % identity between them. Four rrs copies were found in the reference strains and in all the clinical isolates studied. The sequences of each rrs were determined for the clinical strain ADV 360.1, and they showed a relatively high level of heterogeneity (1·43 %). In the majority of cases, polymorphic positions corresponded to nucleotides allowing differentiation between the three species isolated from humans. Moreover, variability observed between rrs copies was higher than that between 16S rDNA sequences of V. parvula and V. dispar. Phylogenetic analysis showed that polymorphism between rrs copies affected the position of strain ADV 360.1 in the tree. Variable positions occurred in stems and loops belonging to variable and hypervariable regions of the 16S rRNA secondary structure but did not change the overall structure of the 16S rRNA. PCR-RFLP experiments performed on 27 clinical isolates of Veillonella sp. suggested that inter-rrs heterogeneity occurs widely among the members of the genus Veillonella. These results, together with the lack of phenotypic criteria for species differentiation, give preliminary arguments for unification of V. dispar and V. parvula.


1999 ◽  
Vol 77 (9) ◽  
pp. 1208-1213 ◽  
Author(s):  
Nancy J Ritchie ◽  
David D Myrold

Full-length 16S rDNA sequences were amplified directly from the nodules of Ceanothus americanus L. and Ceanothus thyrsiflorus Eschsch. using the polymerase chain reaction. Sequences were determined using an automated sequencer, compared against those in GenBank, and assembled into consensus sequences. The sequences were aligned with other full-length Frankia 16S rDNA sequences available from the data base. Phylogenetic trees were obtained using three different algorithms: neighbor joining, parsimony, and the maximum-likelihood method. All three methods showed that these Ceanothus L. microsymbionts were most closely related to the microsymbiont associated with Dryas drummondii Richardson ex Hook. Lvs. rather than Frankia isolated from the Elaeagnaceae.Key words: Frankia, Ceanothus, 16S rDNA.


2015 ◽  
Author(s):  
Warrick Nelson ◽  
Sandrine Eveillard ◽  
Marie-Pierre Dubrana ◽  
Joseph Bové

“Candidatus Liberibacter africanus” (Laf) has long been recognised as a causal agent of the devastating citrus disease huanglongbing (HLB) or citrus greening. This species is currently restricted to Africa, the Arabian Peninsula and some Indian Ocean islands and vectored by the African citrus psyllid, Trioza erytreae. Blotchy mottle on citrus leaves is characteristic of the disease. Somewhat similar symptoms in the Rutaceous tree Calodendrum capensis (Cape Chestnut) resulted in the discovery of Laf outside commercial citrus crops in South Africa. This was classed as a subspecies of Laf (capensis, hence LafC). In subsequent surveys of both commercial citrus crops and Calodendrum, both natural and ornamental specimens, LafC was not found in the citrus crop, nor has Laf been found in C. capensis. HLB was reported from Madagascar in 1968 but no sequences from this source have so far been published. Until fairly recently, only the reference 16S rRNA gene sequences of Laf (L22533) and LafC (AF137368) had been deposited in GenBank. Both of these reference sequences contain a number of unresolved nucleotides. Resolving these nucleotide positions by aligning against more recently available sequences, it becomes evident that these unresolved positions represent one percentage point difference in similarity between Laf and LafC. The originally reported 97.4% similarity is therefore incorrect based on this new information. Recalculating the similarity on the full length 16S rDNA sequence results in 99.54% similarity, a value too high to justify a subspecies status. LafC should therefore be reduced to that of a haplotype of Laf. Further, the six 16S rRNA gene sequences currently available in GenBank identified as the species Laf separate into 2 haplotype groups. The 3 haplotypes of Laf are therefore LafA designated as the first accession sequenced (L22533), LafC for the former capensis subspecies and to recognise the prior use of this term, and LafB for the third haplotype not previously recognised. Thus the cryptic presence of 3 haplotypes is revealed by this review of the Laf 16S rDNA sequences.


2013 ◽  
Vol 42 (1) ◽  
pp. 1-16
Author(s):  
Nayuf Valdez ◽  
Petr Karlovsky ◽  
Lana Dobrindt ◽  
M Imdadul Hoque ◽  
Rakha Hari Sarker ◽  
...  

The possible role of bacteria as pathogens in dieback affected Dalbergia sissoo Roxb. (sissoo) trees in Bangladesh has been investigated. Among the high diversity of bacterial genera detected by 16S rDNA sequences, several plant pathogenic Pseudomonas strains were identified and classified by AFLP analysis. Three isolates produced significant symptoms on D. sissoo seedlings after mechanical inoculation in vivo, suggesting that Pseudomonas should be considered as a potential cause for the dieback disease. DOI: http://dx.doi.org/10.3329/bjb.v42i1.15710 Bangladesh J. Bot. 42(1): 1-16, 2013 (June)


2017 ◽  
Author(s):  
Ali Z Ijaz ◽  
Thomas Jeffries ◽  
Christopher Quince ◽  
Kelly Hamonts ◽  
Brajesh Singh

Amplicon based taxonomic analysis, which determines the presence of microbial taxa in different environments on the basis of marker gene annotations, often uses percentage identity as the main metric to determine sequence similarity against databases. These data are then used to study the distribution of biodiversity as well as response of microbial communities to environmental conditions. However the 16S rRNA gene displays varying degrees of sequence conservation along its length and percentage identity does not fully utilize this information. Additionally, the prevalent usage of Operational Taxonomic Unit, or OTUs is not without its own issues and may lead to a reduction in annotation capability of the system. Hence a novel approach to taxonomic annotation is needed. Here we introduce a new taxonomic annotation pipeline, TaxaSE, which utilizes Shannon entropy to quantify evolutionary conservation within 16S rDNA sequences for enhanced taxonomic annotations. Furthermore, the system is capable of annotation of individual sequences in order to improve fine grain taxonomic annotations. We present both in-silico comparison of the new similarity metric with percentage identity, as well as comparison with the popular QIIME pipeline. The results demonstrate the new similarity metric achieves better performance especially at lower taxa levels. Furthermore, the pipeline is able to extract more fine grain taxonomic annotations compared to QIIME. These exhibit not only the effectiveness of the new pipeline but also highlight the need to shift away from both percentage identity and OTU based approaches for ecological projects.


Sign in / Sign up

Export Citation Format

Share Document