Simple waves for two-dimensional compressible pseudo-steady Euler system

2010 ◽  
Vol 31 (7) ◽  
pp. 827-838 ◽  
Author(s):  
Geng Lai ◽  
Wan-cheng Sheng
2014 ◽  
Vol 144 (6) ◽  
pp. 1127-1154 ◽  
Author(s):  
Taoufik Hmidi ◽  
Samira Sulaiman

We study the low-Mach-number limit for the two-dimensional isentropic Euler system with ill-prepared initial data belonging to the critical Besov space . By combining Strichartz estimates with the special structure of the vorticity, we prove that the lifespan of the solutions goes to infinity as the Mach number goes to zero. We also prove strong convergence results of the incompressible parts to the solution of the incompressible Euler system.


2011 ◽  
Vol 68 (5) ◽  
pp. 964-971 ◽  
Author(s):  
Benjamin J. Harvey ◽  
Maarten H. P. Ambaum ◽  
Xavier J. Carton

Abstract The stability characteristics of the surface quasigeostrophic shielded Rankine vortex are found using a linearized contour dynamics model. Both the normal modes and nonmodal evolution of the system are analyzed and the results are compared with two previous studies. One is a numerical study of the instability of smooth surface quasigeostrophic vortices with which qualitative similarities are found and the other is a corresponding study for the two-dimensional Euler system with which several notable differences are highlighted.


1998 ◽  
Vol 4 (4) ◽  
pp. 609-634 ◽  
Author(s):  
Peng Zhang ◽  
◽  
Jiequan Li ◽  
Tong Zhang ◽  
◽  
...  

1968 ◽  
Vol 19 (1) ◽  
pp. 80-90 ◽  
Author(s):  
R. Foster ◽  
J. F. Clarke

SummaryThe wholly supersonic flow past a two-dimensional wedge is analysed on the assumption that release of chemical energy into the stream can be accomplished across a thin discontinuous plane flame front attached to the apex. Forces experienced by the wedge are calculated and representative flow patterns exhibited. Some typical interactions between the flame and shocks or centred simple waves are discussed, with emphasis on the use of pressure-flow-deflection diagrams to obtain results.


Sign in / Sign up

Export Citation Format

Share Document