Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder

2013 ◽  
Vol 34 (8) ◽  
pp. 985-1000 ◽  
Author(s):  
H. P. Rani ◽  
G. J. Reddy ◽  
C. N. Kim
2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

2020 ◽  
Vol 9 (1) ◽  
pp. 352-360
Author(s):  
P. Aparna ◽  
P. Padmaja ◽  
N. Pothanna ◽  
J.V. Ramana Murthy

AbstractThe study of oscillating flow of a Couple Stress fluid past a permeable sphere is considered. Analytical solution for the flow field in terms of stream function is obtained using modified Bessel functions. The formula for Drag acting on the sphere due external flow is evaluated. Pressure field for the flow region past and inside the sphere is obtained. Effects of physical parameters like couple stress parameter, permeability, frequency and geometric parameters on the drag due to internal and external flows are represented graphically. It is observed that the drag for viscous fluid flow will be less than the case of couple-stress fluid flow and hence couple stress fluids offer resistance for flow.


2019 ◽  
Vol 101 ◽  
pp. 251-258 ◽  
Author(s):  
Samuel O. Adesanya ◽  
Basma Souayeh ◽  
Mohammad Rahimi-Gorji ◽  
M.N. Khan ◽  
O.G. Adeyemi

2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document