scholarly journals Magnetized couple stress fluid flow past a vertical cylinder under thermal radiation and viscous dissipation effects

2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.

2019 ◽  
Vol 24 (3) ◽  
pp. 725-737
Author(s):  
B. Zigta

Abstract An analysis is presented to study the effects of thermal radiation, chemical reaction, viscous and Joule dissipation on MHD free convection flow between a pair of infinite vertical Couette channel walls embedded in a porous medium. The fluid flows by a strong transverse magnetic field imposed perpendicularly to the channel wall on the assumption of a small magnetic Reynolds number. The governing non linear partial differential equations are transformed in to ordinary differential equations and are solved analytically. The effect of various parameters viz., Eckert number, electric conductivity, dynamic viscosity and strength of magnetic field on temperature profile has been discussed and presented graphically.


Author(s):  
Sidra Shaheen ◽  
Khadija Maqbool ◽  
Farah Gul ◽  
Ayesha Sohail

To prevent the respiratory diseases in an air ways, a defense mechanism based on mucus transport by the moving cilia plays an important role. The mucus transport is affected by the thermal radiation, chemical reaction that changes the physics of fluid due to nanoparticles and thickness of mucus, also different problems in respiratory tract may occur due to the mucus efficacy. In this study, it is observed that the mucus transport can be controlled by the magnetic field that is produced by the drug delivery of nanoparticles, thermal radiation due to temperature difference, porous medium due to respiratory infection, and diffusion of the nanoparticles (chemical reaction) due to the magnetic drug delivery. In this model, flow of Jeffrey nanofluid through the ciliated tube resembles with the mucus flow in a wind pipe. The movement of the mucus is observed by the momentum, energy and concentration equation in the presence of body forces due to magnetic field, heat source due to radiation, Darcy’s resistance due to infection and chemical reaction due to the concentration of nanoparticles. Mathematical model of this study forms a complex system of partial differential equations under the low Reynolds number and long wavelength approximation. The nonlinear set of partial differential equations is solved by the Homotopy perturbation method and software “Mathematica,” results are found for velocity, temperature and concentration profiles and concluded that the mucus flow decelerates due to magnetic field produced by the drug delivery of the nanoparticles but accelerates due to the viscoelastic parameter of Jeffrey fluid and Darcy’s resistance parameter due to infection. The heat transfer rate in the mucus flow rises by increasing the random motion and reduces by the radiation and energy loss. The diffusion of the nanoparticles in the mucus rises by the growing values of thermophoresis and chemical reaction parameter and reduces by the growing values of viscoelastic and Brownian motion parameter.


2018 ◽  
Vol 48 (2) ◽  
pp. 744-759 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
M. Gholinia ◽  
B. Jafari ◽  
A. Ghanbarpour ◽  
H. Olfian ◽  
...  

2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.


2018 ◽  
Vol 339 ◽  
pp. 820-836 ◽  
Author(s):  
Hloniphile Sithole ◽  
Hiranmoy Mondal ◽  
Sicelo Goqo ◽  
Precious Sibanda ◽  
Sandile Motsa

Sign in / Sign up

Export Citation Format

Share Document