Calyculin A causes sensitization to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by ROS-mediated down-regulation of cellular FLICE-inhibiting protein (c-FLIP) and by enhancing death receptor 4 mRNA stabilization

APOPTOSIS ◽  
2012 ◽  
Vol 17 (11) ◽  
pp. 1223-1234 ◽  
Author(s):  
Seon Min Woo ◽  
Kyoung-jin Min ◽  
Taeg Kyu Kwon
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4938-4938
Author(s):  
Yi Wang ◽  
Yangyi Bao ◽  
Leiming Xia ◽  
Liu Liu ◽  
Kunyuan Guo ◽  
...  

Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells but not in most normal cells, and is identified to be effective in various cancers, include myeloid leukemic cells[1]. Although some leukemia cell lines, K562 and KG-1, are sensitive to TRAIL, many showed certain degrees of resistance to TRAIL-mediated apoptosis[2,3], and the mechanism remains largely unknown, which forced us to find out ways to solve the problem. In this study, we investigated whether thioridazine, a phenothiazine derivative, could overcome the TRAIL resistance in K562 and KG-1 cells. Recently, we showed that Compared to treatment with thioridazine or TRAIL alone, co-treatment with thioridazine and TRAIL-induced apoptosis in K562 and KG-1 cells synergistically. This combination led to activation of caspase-8 and Bid, the cytosolic cumulation of cytochrome c from mitochondria as well as caspase-3 activated downstream. Treatment with thioridazine induced down-regulation of PI3K-AKT-NF-κB pathway. meanwhile, thioridazine dropped the level of NF-κB-dependent Bcl-xL, leading caspase activated and Bid cleaved. the expression of TRAIL-receptors in both K562 and KG-1 cells underwentthe treatment of thioridazine investigated that thioridazine significantly up-regulated DR5 by up to 51.22%, but not other TRAIL-receptors such as DR4, decoy receptor 1, and DcR2. Therefore, our results indicate that the combination of TRAIL with thioridazine overturn TRAIL resistance through Up-regulating the expression of DR5 and down-regulation of AKT protein, and combination treatment with thioridazine and TRAIL may be a novel therapeutic strategy in leukemia. Reference: Srivastava R K. TRAIL/Apo-2L: mechanisms and clinical applications in cancer.[J]. Neoplasia, 2001, 3(6):535-546. Nimmanapalli R, Porosnicu M, Nguyen D, et al. Cotreatment with STI-571 enhances tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL or apo-2L)-induced apoptosis of Bcr-Abl-positive human acute leukemia cells.[J]. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 2001, 7(2):350-357. Yang T, Lan J, Huang Q, et al. Embelin sensitizes acute myeloid leukemia cells to TRAIL through XIAP inhibition and NF-κB inactivation.[J]. Cell Biochemistry & Biophysics, 2015, 71(1):291-297. Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 23 (18) ◽  
pp. 6609-6617 ◽  
Author(s):  
Robert Endres ◽  
Georg Häcker ◽  
Inge Brosch ◽  
Klaus Pfeffer

ABSTRACT The silencer of death domains (SODD) has been proposed to prevent constitutive signaling of tumor necrosis factor receptor 1 (TNFR1) in the absence of ligand. Besides TNFR1, death receptor 3 (DR3), Hsp70/Hsc70, and Bcl-2 have been characterized as binding partners of SODD. In order to investigate the in vivo role of SODD, we generated mice congenitally deficient in expression of the sodd gene. No spontaneous inflammatory infiltrations were observed in any organ of these mice. Consistent with this finding, in the absence of SODD no alteration in the activation patterns of nuclear factor κB (NF-κB), stress kinases, or ERK1 or -2 was observed after stimulation with tumor necrosis factor (TNF). Activation of NF-κB by DR3 was also unchanged. The extents of DR3- and TNF-induced apoptosis were comparable in gene-deficient and wild-type cells. Protection of cells against heat shock as mediated by the Hsp70 system and against staurosporine-induced apoptosis was independent of SODD. Furthermore, resistance to high-dose lipopolysaccharide (LPS) injections, LPS-d-GalN injections, and infection with listeriae was similar in wild-type and gene-deficient mice. In conclusion, our data do not support the concept of a unique, nonredundant role of SODD for the functions of TNFR1, Hsp70, and DR3.


2010 ◽  
Vol 188 (6) ◽  
pp. 851-862 ◽  
Author(s):  
Bernhard Gillissen ◽  
Jana Wendt ◽  
Antje Richter ◽  
Anja Richter ◽  
Annika Müer ◽  
...  

Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.


2009 ◽  
Vol 15 (17) ◽  
pp. 5457-5465 ◽  
Author(s):  
Agnes Elias ◽  
Markus D. Siegelin ◽  
Albert Steinmüller ◽  
Andreas von Deimling ◽  
Ulrike Lass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document