Role of Cyclooxygenases in the Stimulatory Effect of Carcinogen 1,2-Dimethylhydrazine on Stem Cell Survival in the Intestinal Epithelium and Bone Marrow

2008 ◽  
Vol 146 (4) ◽  
pp. 540-542
Author(s):  
S. Ya. Proskuryakov ◽  
A. G. Konoplyannikov ◽  
O. A. Konoplyannikova ◽  
L. P. Ulyanova ◽  
A. F. Tsyb
2017 ◽  
Vol 32 (7) ◽  
pp. 906-919 ◽  
Author(s):  
Dhanak Gupta ◽  
David M Grant ◽  
Kazi M Zakir Hossain ◽  
Ifty Ahmed ◽  
Virginie Sottile

Author(s):  
Umayal Sivagnanalingam ◽  
John Attanasio ◽  
Thomas Mariani ◽  
Patricia J. Sime ◽  
Jody Gascon ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1248-1248
Author(s):  
Esther Heideveld ◽  
Maartje van Den Biggelaar ◽  
Floris P. van Alphen ◽  
Marieke Von Lindern ◽  
Emile van den Akker

Abstract Erythropoiesis occurs in erythroblastic islands, specific structures in the bone marrow comprising a central macrophage surrounded by erythroid precursors at different stages of terminal differentiation. The central macrophage of the erythroblastic island supports proliferation and differentiation of erythroblasts, as well as phagocytosis of the extruded erythroblast nuclei, the pyrenocytes. Its identity, however, has been poorly characterized. We previously showed that macrophages also enhance in vitro erythropoiesis because they support hematopoietic stem cell (HSC) survival [Heideveld et al. 2015]. Thus, bone marrow macrophages affect all stages of erythropoiesis. The aim of our study is to characterize the relevant human bone marrow macrophages and unravel the mechanism by which they support erythropoiesis with the ultimate goal (i) to optimize erythroblast culture systems that produce erythrocytes for transfusion purposes, and (ii) to target macrophages in vivo to improve erythropoiesis in anemic patients. Macrophages are a heterogeneous population, that can be divided into pro-inflammatory M1 and anti-inflammatory M2 macrophages. Macrophages that we showed to support stem cell survival, and subsequently enhance the yield of erythroid cell cultures, were characterized as a subclass: M2c-like macrophages. These macrophages were derived from CD14+ cells isolated from human peripheral blood mononuclear cells that were cultured in serum-free media supplemented with stem cell factor, erythropoietin and dexamethasone. Within three days these macrophages expressed CD163high, CD169, mannose receptor (MR), CXCR4 and HLA-DR and harbored characteristics of bone marrow resident macrophages. This differentiation process was dependent on glucocorticoid receptor activation. Mass spectrometry of monocytes cultured in presence and absence of dexamethasone showed that expression of CD163 and MR was strictly Dex-dependent, underscoring the role of glucocorticoids in the phenotype of M2c macrophages. Protein ontology analysis revealed dexamethasone-mediated enrichment of lysosome, endocytosis and endothelial development (e.g. STAB1, IL13RA1, CD81, SLC1A3 and FKBP5). We wondered whether these macrophages with increased endosomal and lysosomal capacity not only support stem cell survival and enable erythroid commitment, but also support erythroblastic islands. In mice, it has been shown that clearance of the pyrenocytes by central macrophages occurs presumably via TAM-receptors on the macrophages. Indeed, mRNA expression of cultured M2c-like macrophages showed increased levels of TAM family members MerTK and AXL. Functionally, these macrophages have the capacity to phagocytose zymosan and to bind nuclei. Furthermore, co-culture of the M2c-like macrophages with erythroblasts yielded GPA+(erythroid marker)/CD14+ cell aggregates that suggested the formation of erythroblastic islands. Interestingly, M2c-like macrophages expressing CD163high, MR and CD169 were also observed in human bone marrow aspirates and human fetal livers resembling macrophages induced in in vitro cultures in presence of dexamethasone. Currently, we investigate the mechanism by which glucocorticoids induce monocytes to differentiate into macrophages that may be used to model erythroblastic island-mediated erythropoiesis. Knowledge on the function of such a erythroblastic island is lacking by the absence of an in vitro model. Furthermore, targeting this mechanism in vivo may enhance the recovery of erythropoiesis following bone marrow transplantation. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. (2015) Heideveld E, Masiello F, Marra M, Esteghamat F, Yağcı N, von Lindern M, Migliaccio AR, van den Akker E. Haematologica. 100(11):1396-1406 Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 299 (4) ◽  
pp. H1077-H1082 ◽  
Author(s):  
Yoko Suzuki ◽  
Ha Won Kim ◽  
Muhammad Ashraf ◽  
Husnain Kh Haider

We have previously reported that preconditioning of bone marrow-derived mesenchymal stem cells (MSCs) with diazoxide (DZ) significantly improved cell survival via NF-κB signaling. Since micro-RNAs (miRNAs) are critical regulators of a wide variety of biological events, including apoptosis, proliferation, and differentiation, it is likely that DZ-induced survival is mediated by miRNAs. Here we show that miR-146a expressed during preconditioning with DZ is a key regulator of stem cell survival. Treatment of MSCs with DZ (200 μM) markedly increased miR-146a expression and promoted cell survival, as evaluated by lactate dehydrogenase release and transferase-mediated dUTP nick-end labeling staining. Interestingly, blocking NF-κB by IKK-γ NEMO binding domain inhibitor peptide did not induce miR-146a expression, indicating NF-κB regulates miR-146a expression. Moreover, blockade of miR-146a expression by antisense miR-146a inhibitor abolished DZ-induced cytoprotective effects, suggesting a critical role of miR-146a in MSC survival. Computational analysis found a consensus putative target site of miR-146a relevant to apoptosis in the 3′ untranslated region of Fas mRNA. The role of Fas as a target gene was substantiated by abrogation of miR-146a, which markedly increased Fas protein expression. This was verified by luciferase reporter assay, which showed that forced expression of miR-146a downregulated Fas expression via targeting its 3′-UTR of this gene. Taken together, these data demonstrated that cytoprotection afforded by preconditioning of MSCs with DZ was regulated by miR-146a induction, which may be a novel therapeutic target in cardiac ischemic diseases.


2012 ◽  
Vol 90 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Paras Kumar Mishra ◽  
Vishalakshi Chavali ◽  
Naira Metreveli ◽  
Suresh C. Tyagi

The contribution of extracellular matrix (ECM) to stem cell survival and differentiation is unequivocal, and matrix metalloproteinase-9 (MMP9) induces ECM turn over; however, the role of MMP9 in the survival and differentiation of cardiac stem cells is unclear. We hypothesize that ablation of MMP9 enhances the survival and differentiation of cardiac stem cells into cardiomyocytes in diabetics. To test our hypothesis, Ins2+/− Akita, C57 BL/6J, and double knock out (DKO: Ins2+/−/MMP9−/−) mice were used. We created the DKO mice by deleting the MMP9 gene from Ins2+/−. The above 3 groups of mice were genotyped. The activity and expression of MMP9 in the 3 groups were determined by in-gel gelatin zymography, Western blotting, and confocal microscopy. To determine the role of MMP9 in ECM stiffness (fibrosis), we measured collagen deposition in the histological sections of hearts using Masson’s trichrome staining. The role of MMP9 in cardiac stem cell survival and differentiation was determined by co-immunoprecipitation (co-IP) of MMP9 with c-kit (a marker of stem cells) and measuring the level of troponin I (a marker of cardiomyocytes) by confocal microscopy in the 3 groups. Our results revealed that ablation of MMP9 (i) reduces the stiffness of ECM by decreasing collagen accumulation (fibrosis), and (ii) enhances the survival (elevated c-kit level) and differentiation of cardiac stem cells into cardiomyocytes (increased troponin I) in diabetes. We conclude that inhibition of MMP9 ameliorates stem cell survival and their differentiation into cardiomyocytes in diabetes.


Cartilage ◽  
2019 ◽  
pp. 194760351984167 ◽  
Author(s):  
Sun H. Peck ◽  
Justin R. Bendigo ◽  
John W. Tobias ◽  
George R. Dodge ◽  
Neil R. Malhotra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document