Comparative Study of the γH2AX Foci Forming in Human Lung Fibroblasts Incubated in Media Containing Tritium-Labeled Thymidine or Amino Acids

2021 ◽  
Vol 172 (2) ◽  
pp. 245-249
Author(s):  
S. M. Rodneva ◽  
A. A. Osipov ◽  
D. V. Guryev ◽  
A. A. Tsishnatti ◽  
Y. А. Fedotov ◽  
...  
1991 ◽  
Vol 260 (6) ◽  
pp. L450-L456 ◽  
Author(s):  
A. Elgavish ◽  
E. Meezan

Studies were carried out in human lung fibroblasts (IMR-90) to investigate 1) the relative contribution of two extracellular pools, inorganic sulfate and sulfur-containing amino acids, to the intracellular fraction precipitable by trichloroacetic acid and 2) the possibility that the transport of these sulfur-containing substrates at the plasma membrane may be a limiting step for macromolecular sulfation. Our studies indicate that the ability to use SO4(2-) released by intracellular catabolism of the sulfur-containing amino acid L-cysteine differs from one cell system to another. In contrast to smooth muscle cells, in the human lung fibroblast, L-cysteine contributes significantly to the intercellular pool of SO4(2-) used for sulfation at extracellular [SO4(2-)] less than 100 microM. However, under physiological conditions with respect to SO4(2-) ([SO4(2-)]0 = 300 microM), L-cysteine does not contribute greater than 30% of the sulfate incorporated into the cellular fraction. Taurine (2-aminoethanesulfonic acid) inhibits SO4(2-) incorporation into the cell-associated macromolecular fraction. However, results suggest that the effect is not due to either SO4(2-) released by its catabolism or to an effect on SO4(2-) transport into the cell. The fact that the transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate incorporation indicates that carrier-mediated sulfate transport at the cellular plasma membrane may be a limiting step for sulfate incorporation. In conclusion, under physiological conditions with respect to SO4(2-), inorganic sulfate is a major source of sulfate for sulfation in human lung fibroblasts and macromolecular sulfation may be limited by its transport into the cells.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Ryota Kikuchi ◽  
Yuki Maeda ◽  
Takao Tsuji ◽  
Kazuhiro Yamaguchi ◽  
Shinji Abe ◽  
...  

1981 ◽  
Vol 256 (6) ◽  
pp. 3135-3140
Author(s):  
P. Tolstoshev ◽  
R.A. Berg ◽  
S.I. Rennard ◽  
K.H. Bradley ◽  
B.C. Trapnell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document