Effect of torsional ground motion on the seismic response of highway bridges

2019 ◽  
Vol 17 (5) ◽  
pp. 2603-2625
Author(s):  
Ecem Özşahin ◽  
Gökhan Pekcan
2010 ◽  
Vol 26 (4) ◽  
pp. 999-1016 ◽  
Author(s):  
Zeynep Gülerce ◽  
Norman A. Abrahamson

The vertical ground motion component is disregarded in the design of ordinary highway bridges in California, except for the bridges located in high seismic zones (sites with design horizontal peak ground acceleration greater than 0.6 g). The influence of vertical ground motion on the seismic response of single-bent, two-span highway bridges designed according to Caltrans Seismic Design Code (SDC-2006) is evaluated. A probabilistic seismic hazard framework is used to address the probability of exceeding the elastic capacity for various structural parameters when the vertical component is included. Negative mid-span moment demand is found to be the structural parameter that is most sensitive to vertical accelerations.A series of hazard curves for negative mid-span moment are developed for a suite of sites in Northern California. The annual probability of exceeding the elastic capacity of the negative mid-span moment is as large as 0.01 for the sites close to active faults when the vertical component is included. Simplified approaches based on the distance to major faults or the median design peak acceleration show that there is a large chance (0.4 to 0.65) of exceeding the elastic limit if the current 0.6 g threshold is used for the consideration of vertical ground motions for ordinary highway bridges. The results of this study provide the technical basis for consideration of a revision of the 0.6 g threshold.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


2011 ◽  
Vol 16 (3) ◽  
pp. 364-374 ◽  
Author(s):  
Aman M. Mwafy ◽  
Oh-Sung Kwon ◽  
Amr Elnashai ◽  
Youssef M. A. Hashash

1992 ◽  
Vol 19 (1) ◽  
pp. 117-128 ◽  
Author(s):  
A. Ghobarah ◽  
T. Baumber

During recent earthquakes, the documented cases of collapsed unreinforced brick masonry industrial chimneys are numerous. Observed modes of structural failure are either total collapse or sometimes collapse or damage of the top third of the structure. The objective of this study is to analyze and explain the modes of observed failure of masonry chimneys during earthquake events, and to evaluate two retrofit systems for existing chimneys in areas of high seismicity. The behaviour of the masonry chimney, when subjected to earthquake ground motion, was modelled using a lumped mass system. Several actual strong motion records were used as input to the model. The shear, moment, and displacement responses to the earthquake ground motion were evaluated for various chimney configurations. It was found that the failure of the chimney at its base is the result of the fundamental mode of vibration. Failure at the top third of the structure due to the higher modes of vibration is possible when the chimney is subjected to high frequency content earthquakes. Higher modes, which are normally not of concern under wind loading, were shown to be critical in seismic design. Post-tensioning and the reinforcing steel cage were found to be effective retrofit systems. Key words: masonry, chimneys, behaviour, analysis, design, retrofit, dynamic, earthquakes, seismic response.


2021 ◽  
pp. 875529302110513
Author(s):  
Eleftheria Efthymiou ◽  
Alfredo Camara

The definition of the spatial variability of the ground motion (SVGM) is a complex and multi-parametric problem. Its effect on the seismic response of cable-stayed bridges is important, yet not entirely understood to date. This work examines the effect of the SVGM on the seismic response of cable-stayed bridges by means of the time delay of the ground motion at different supports, the loss of coherency of the seismic waves, and the incidence angle of the seismic waves. The focus herein is the effect of the SVGM on cable-stayed bridges with various configurations in terms of their length and of design parameters such as the pylon shape and the pylon–cable system configuration. The aim of this article is to provide general conclusions that are applicable to a wide range of canonical cable-stayed bridges and to contribute to the ongoing effort to interpret and predict the effect of the SVGM in long structures. This work shows that the effect of the SVGM on the seismic response of cable-stayed bridges varies depending on the pylon shape, height, and section dimensions; on the cable-system configuration; and on the response quantity of interest. Furthermore, the earthquake incidence angle defines whether the SVGM is important to the seismic response of the cable-stayed bridges. It is also confirmed that the SVGM excites vibration modes of the bridges that do not contribute to their seismic response when identical support motion is considered.


Sign in / Sign up

Export Citation Format

Share Document