scholarly journals Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests

2009 ◽  
Vol 19 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Reynaldo Linares-Palomino ◽  
Lars Peter Kvist ◽  
Zhofre Aguirre-Mendoza ◽  
Carlos Gonzales-Inca
2016 ◽  
Vol 64 (2) ◽  
pp. 859 ◽  
Author(s):  
José Miguel Romero Saritama ◽  
César Pérez-Rúiz

The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the dry Tumbesian forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


1969 ◽  
Vol 47 (12) ◽  
pp. 1851-1855 ◽  
Author(s):  
E. S. Telfer

Prediction equations are presented for use in estimating total aboveground weight and maximum leaf weight for 22 species of woody plants. Stem diameter at the ground line was found to be closely correlated with both total and leaf weights. This diameter was therefore used in the equations as the measurement from which weights were predicted.


2021 ◽  
Vol 5 (2) ◽  
pp. 64-72
Author(s):  
Danesha Seth Carley ◽  
Lauren A Gragg ◽  
Matthew J Matthew ◽  
Thomas W Rufty

Sign in / Sign up

Export Citation Format

Share Document