scholarly journals Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter

2017 ◽  
Vol 28 (2-3) ◽  
pp. 159-170 ◽  
Author(s):  
Weiqiang Zhu ◽  
Peiyu Zhang ◽  
Deshuang Yu ◽  
Huiyu Dong ◽  
Jin Li
2020 ◽  
Vol 81 (1) ◽  
pp. 138-147
Author(s):  
Xiaoling Zhang ◽  
Xincong Liu ◽  
Meng Zhang

Abstract In this study, the effects of elevated chemical oxygen demand/nitrogen (COD/N) ratios on nitrogen removal, production and composition of the extracellular polymer substances (EPS) and microbial community of a completely autotrophic nitrogen removal via nitrite (CANON) process were studied in a sequencing batch membrane bioreactor (SBMBR). The whole experiment was divided into two stages: the CANON stage (without organic matter in influent) and the simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) stage (with organic matter in influent). When the inflow ammonia nitrogen was 420 mg/L and the COD/N ratio was no higher than 0.8, the addition of COD was helpful to the CANON process; the total nitrogen removal efficiency (TNE) was improved from approximately 65% to more than 75%, and the nitrogen removal rate (NRR) was improved from approximately 0.255 kgN/(m3·d) to approximately 0.278 kgN/(m3•d), while the TNE decreased to 60%, and the NRR decreased to 0.236 kgN/(m3•d) when the COD/N ratio was elevated to 1.0. For the EPS, the amounts of soluble EPS (SEPS) and loosely bound EPS (LB-EPS) were both higher in the CANON stage than in the SNAD stage, while the amount of tightly bound EPS (TB-EPS) in the SNAD stage was significantly higher due to the proliferation of heterotrophic bacteria. The metagenome sequencing technique was used to analyse the microbial community in the SBMBR. The results showed that the addition of COD altered the structure of the bacterial community in the SBMBR. The amounts of Candidatus ‘Anammoxoglobus’ of anaerobic ammonia oxidation bacteria (AAOB) and Nitrosomonas of ammonia oxidizing bacteria (AOB) both decreased significantly, and Nitrospira of nitrite oxidizing bacteria (NOB) was always in the reactor, although the amount changed slightly. A proliferation of denitrifiers related to the genera of Thauera, Dokdonella and Azospira was found in the SBMBR.


2019 ◽  
Vol 6 (11) ◽  
pp. 190771 ◽  
Author(s):  
Jingyue Yang ◽  
Jun Li ◽  
Zhaoming Zheng ◽  
Liangang Hou ◽  
Dongbo Liang ◽  
...  

Anaerobic ammonia oxidation (anammox) and denitrification can work together to weaken the influence of organic matter on anaerobic ammonia oxidation bacteria (AAOB) and improve nitrogen removal performance. As the common substrate of anammox and denitrification, nitrite will also affect nitrogen removal performance when it is insufficient, which is not conducive to reflect the endurance of anammox reactor to organic matter. The UASB continuous flow experiment was carried out to investigate the effect of the concentration of glucose and sodium acetate on nitrogen removal performance of anammox reactor under the condition of sufficient nitrite. With glucose as the organic matter, when the chemical oxygen demand (COD) concentration increased to 200 mg l −1 , nitrogen removal performance of the system began to deteriorate significantly, and the anammox activity was significantly inhibited. With sodium acetate as the organic substance, the anammox activity was affected when the COD was 20 mg l −1 . Adequate nitrite could relieve the inhibition of the coupling system by a low concentration (COD < 200 mg l −1 ) of glucose organic matter. However, it could not relieve the inhibitory effect of sodium acetate. With the increase of organic concentration, the biological density of AAOB in granular sludge gradually decreased, while the biological density of denitrifying bacteria increased gradually.


2007 ◽  
Vol 56 (3) ◽  
pp. 145-150 ◽  
Author(s):  
D. Paredes ◽  
P. Kuschk ◽  
F. Stange ◽  
R.A. Müller ◽  
H. Köser

Anaerobic ammonia oxidation (Anammox) has been identified as a new general process-strategy for nitrogen removal in wastewater treatment. In order to evaluate the role and effects of the Anammox process in wetlands, laboratory-scale model experiments were performed with planted fixed bed reactors. A reactor (planted with Juncus effusus) was fed with synthetic wastewater containing 150–200 mg L−1 NH+4 and 75–480 mg L−1 NO−2. Under these operating conditions, the plants were affected by the high ammonia and nitrite concentrations and the nitrogen removal rate fell within the same range of 45–49 mg N d−1 (equivalent to 0.64–0.70 g Nm−2d−1) as already reported by other authors. In order to stimulate the rate of nitrogen conversion, the planted reactor was inoculated with Anammox biomass. As a result, the rate of nitrogen removal was increased 4–5-fold and the toxic effects on the plants also disappeared. The results show that, in principle, subsurface flow wetlands can also function as an “Anammox bioreactor”. However, the design of a complete process for the treatment of waters with a high ammonia load and, in particular, the realisation of simple technical solutions for partial nitrification have still to be developed.


2021 ◽  
Author(s):  
Hong Yang ◽  
Xiaotong Wang

In view of the problems of slow start, easy loss and sensitive to low temperature environment in the suspension culture of anaerobic ammonia oxidation bacteria (AnAOB) suspension culture, polyvinyl alcohol (PVA) was used to prepare the anaerobic ammonia oxidation (anammox) immobilized filler, so as to realize the rapid start-up and activity improvement of anammox. Meanwhile, the response of nitrogen removal performance of encapsulated biomass to temperature reduction was determine by batch experiment. In addition, changes in the internal structure, flora composition and diversity of the filler were analyzed by scanning electron microscopy (SEM) and high-throughput sequencing. The results showed that the nitrogen removal capacity of the immobilized filler (E1) was significantly higher than that of the suspended sludge contrast system (S1) after 100d enrichment culture. The final nitrogen removal rate reached 1.168kg·(m3·d-1) -1, and the total nitrogen removal efficiency was 92%. The immobilization improved the resistance of AnAOB to low temperature. At 15°C, the effluent ammonia and nitrite of S1 were seriously accumulated, and E1 could maintain a stable nitrogen removal effect under the regulation of HRT. The population diversity was maintained in the immobilized filler, and the functional bacteria of anammox Candidatus Kuenenia was effectively enriched, accounting for 32.55% in E1. The results of this study provide valuable information for the application and popularization of anammox immobilized filler.


Sign in / Sign up

Export Citation Format

Share Document