scholarly journals Rapid Start-Up of Anammox by Immobilization and Its Response to Low Temperature Stress

2021 ◽  
Author(s):  
Hong Yang ◽  
Xiaotong Wang

In view of the problems of slow start, easy loss and sensitive to low temperature environment in the suspension culture of anaerobic ammonia oxidation bacteria (AnAOB) suspension culture, polyvinyl alcohol (PVA) was used to prepare the anaerobic ammonia oxidation (anammox) immobilized filler, so as to realize the rapid start-up and activity improvement of anammox. Meanwhile, the response of nitrogen removal performance of encapsulated biomass to temperature reduction was determine by batch experiment. In addition, changes in the internal structure, flora composition and diversity of the filler were analyzed by scanning electron microscopy (SEM) and high-throughput sequencing. The results showed that the nitrogen removal capacity of the immobilized filler (E1) was significantly higher than that of the suspended sludge contrast system (S1) after 100d enrichment culture. The final nitrogen removal rate reached 1.168kg·(m3·d-1) -1, and the total nitrogen removal efficiency was 92%. The immobilization improved the resistance of AnAOB to low temperature. At 15°C, the effluent ammonia and nitrite of S1 were seriously accumulated, and E1 could maintain a stable nitrogen removal effect under the regulation of HRT. The population diversity was maintained in the immobilized filler, and the functional bacteria of anammox Candidatus Kuenenia was effectively enriched, accounting for 32.55% in E1. The results of this study provide valuable information for the application and popularization of anammox immobilized filler.

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Liqiu Zhang ◽  
Wei Lv ◽  
Shugeng Li ◽  
Zhongxuan Geng ◽  
Hainan Yao

Nitrogen removal characteristics and the comparison of the microbial community structure were investigated in different anaerobic ammonia oxidation (Anammox) reactors: an anaerobic sequencing batch reactor (ASBR) and a biofilter reactor. The Anammox systems were inoculated with sludge from the second settling tank of a wastewater treatment plant in Guangzhou, China. After successful start up of Anammox, the microbial community structure of different Anammox reactors were studied through high-throughput sequencing. The results showed that anaerobic ammonium oxidation in the ASBR reactor could successfully start up after 134 days, while Anammox in the biofilter could start up after 114 days. In both systems, total nitrogen removal was at 80% after more than 200 days of operation. The diversity of denitrifying microorganisms was high in both reactors, with Planctomycetes as the main taxa. Anammox bacteria belonging to the genera Candidatus Anammoxoglobus and Kuenenia, were dominant in the ASBR, while all three genera of Candidatus, Anammoxoglobus, Kuenenia, and Brocadia, could be detected in the biofilter reactor. Therefore, the biofilter starts up faster than the ASBR, and contains richer species, which makes it more suitable to domesticate Anammox bacteria.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2014 ◽  
Vol 675-677 ◽  
pp. 633-637
Author(s):  
Ze Ya Wang ◽  
Li Ping Qiu ◽  
Li Xin Zhang ◽  
Jia Bin Wang

A set of bench scale ASBR reactors with 0.5 L effective volume were carried out to culture anaerobic ammonia oxidizing bacteria, while the anaerobic granular sludge was inoculated into these reactors as well as the operating temperature is 30±1°C, HRT is 72h and pH is approximate 7.8 in this experiment. After 60 days running, these reactors appeared anaerobic ammonia oxidation phenomenon. When the influent NH4+-N and NO2--N concentrations were approximately 50 mg/L and 70 mg/L, the NH4+-N, NO2--N and TN removal were 80%, 90% and 70%, respectively, the ratio of the NH4+-N and NO2--N removal and NO3--N production is approximately 1:1.5:0.25, close to the theoretical valve of 1:1.32:0.26 and that mainly accord with the chemical equilibrium of anaerobic ammonia oxidation mode. Furthermore, when the phenomenon of anaerobic ammonia oxidation appeared, effluent pH value was slightly higher than influent and the sludge become red.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Lu ◽  
Yiguo Hong ◽  
Ying Wei ◽  
Ji-Dong Gu ◽  
Jiapeng Wu ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) process has been acknowledged as an environmentally friendly and time-saving technique capable of achieving efficient nitrogen removal. However, the community of nitrification process in anammox-inoculated wastewater treatment plants (WWTPs) has not been elucidated. In this study, ammonia oxidation (AO) and nitrite oxidation (NO) rates were analyzed with the incubation of activated sludge from Xinfeng WWTPs (Taiwan, China), and the community composition of nitrification communities were investigated by high-throughput sequencing. Results showed that both AO and NO had strong activity in the activated sludge. The average rates of AO and NO in sample A were 6.51 µmol L−1 h−1 and 6.52 µmol L−1 h−1, respectively, while the rates in sample B were 14.48 µmol L−1 h−1 and 14.59 µmol L−1 h−1, respectively. The abundance of the nitrite-oxidizing bacteria (NOB) Nitrospira was 0.89–4.95 × 1011 copies/g in both samples A and B, the abundance of ammonia-oxidizing bacteria (AOB) was 1.01–9.74 × 109 copies/g. In contrast, the abundance of ammonia-oxidizing archaea (AOA) was much lower than AOB, only with 1.28–1.53 × 105 copies/g in samples A and B. The AOA community was dominated by Nitrosotenuis, Nitrosocosmicus, and Nitrososphaera, while the AOB community mainly consisted of Nitrosomonas and Nitrosococcus. The dominant species of Nitrospira were Candidatus Nitrospira defluvii, Candidatus Nitrospira Ecomare2 and Nitrospira inopinata. In summary, the strong nitrification activity was mainly catalyzed by AOB and Nitrospira, maintaining high efficiency in nitrogen removal in the anammox-inoculated WWTPs by providing the substrates required for denitrification and anammox processes.


2020 ◽  
Vol 81 (1) ◽  
pp. 138-147
Author(s):  
Xiaoling Zhang ◽  
Xincong Liu ◽  
Meng Zhang

Abstract In this study, the effects of elevated chemical oxygen demand/nitrogen (COD/N) ratios on nitrogen removal, production and composition of the extracellular polymer substances (EPS) and microbial community of a completely autotrophic nitrogen removal via nitrite (CANON) process were studied in a sequencing batch membrane bioreactor (SBMBR). The whole experiment was divided into two stages: the CANON stage (without organic matter in influent) and the simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) stage (with organic matter in influent). When the inflow ammonia nitrogen was 420 mg/L and the COD/N ratio was no higher than 0.8, the addition of COD was helpful to the CANON process; the total nitrogen removal efficiency (TNE) was improved from approximately 65% to more than 75%, and the nitrogen removal rate (NRR) was improved from approximately 0.255 kgN/(m3·d) to approximately 0.278 kgN/(m3•d), while the TNE decreased to 60%, and the NRR decreased to 0.236 kgN/(m3•d) when the COD/N ratio was elevated to 1.0. For the EPS, the amounts of soluble EPS (SEPS) and loosely bound EPS (LB-EPS) were both higher in the CANON stage than in the SNAD stage, while the amount of tightly bound EPS (TB-EPS) in the SNAD stage was significantly higher due to the proliferation of heterotrophic bacteria. The metagenome sequencing technique was used to analyse the microbial community in the SBMBR. The results showed that the addition of COD altered the structure of the bacterial community in the SBMBR. The amounts of Candidatus ‘Anammoxoglobus’ of anaerobic ammonia oxidation bacteria (AAOB) and Nitrosomonas of ammonia oxidizing bacteria (AOB) both decreased significantly, and Nitrospira of nitrite oxidizing bacteria (NOB) was always in the reactor, although the amount changed slightly. A proliferation of denitrifiers related to the genera of Thauera, Dokdonella and Azospira was found in the SBMBR.


2007 ◽  
Vol 56 (3) ◽  
pp. 145-150 ◽  
Author(s):  
D. Paredes ◽  
P. Kuschk ◽  
F. Stange ◽  
R.A. Müller ◽  
H. Köser

Anaerobic ammonia oxidation (Anammox) has been identified as a new general process-strategy for nitrogen removal in wastewater treatment. In order to evaluate the role and effects of the Anammox process in wetlands, laboratory-scale model experiments were performed with planted fixed bed reactors. A reactor (planted with Juncus effusus) was fed with synthetic wastewater containing 150–200 mg L−1 NH+4 and 75–480 mg L−1 NO−2. Under these operating conditions, the plants were affected by the high ammonia and nitrite concentrations and the nitrogen removal rate fell within the same range of 45–49 mg N d−1 (equivalent to 0.64–0.70 g Nm−2d−1) as already reported by other authors. In order to stimulate the rate of nitrogen conversion, the planted reactor was inoculated with Anammox biomass. As a result, the rate of nitrogen removal was increased 4–5-fold and the toxic effects on the plants also disappeared. The results show that, in principle, subsurface flow wetlands can also function as an “Anammox bioreactor”. However, the design of a complete process for the treatment of waters with a high ammonia load and, in particular, the realisation of simple technical solutions for partial nitrification have still to be developed.


2004 ◽  
Vol 50 (6) ◽  
pp. 1-8 ◽  
Author(s):  
X. Li ◽  
G. Zen ◽  
K.H. Rosenwinkel ◽  
S. Kunst ◽  
D. Weichgrebe ◽  
...  

A process for autotrophic nitrogen removal named aerobic/anoxic deammonification wherein NH4+ is oxidized by nearly 50% to NO2- and subsequently the ammonia is converted together with the nitrite to molecular nitrogen (N2 gas), has come to full-scale application within the last few years. In this research, sludge from a biological rotation disk located at a landfill leachate plant at Mechernich, Germany, which is capable of performing the deammonification process, was used as seed sludge for acclimating deammonification activities in laboratory scale batch-reactors. In parallel, the same tests were performed with normal activated sludge. Research results indicated that deammonification activities could be obtained from the seeded reactor and also, with limited performance, from normal activated sludge in a single SBR system after several months acclimation. It was also seen that oxygen is an important factor that influences the deammonification from both the acclimatization process and process running. Further results were approved that report an impact of nitrite as a process intermediate on the closely related process of anaerobic ammonia oxidation (“Anammox”). However, limiting concentrations on a bacteria population performing deammonification were found to be different to those reported for a pure Anammox-culture. Also the influence of another intermediate, hydrazine, was tested for speeding up the acclimating process by inducing the deammonification activities and recovering the activities of deammonification from nitrite inhibition.


Sign in / Sign up

Export Citation Format

Share Document