Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems

2015 ◽  
Vol 123 (3) ◽  
pp. 447-465 ◽  
Author(s):  
Clare M. Stielstra ◽  
Kathleen A. Lohse ◽  
Jon Chorover ◽  
Jennifer C. McIntosh ◽  
Greg A. Barron-Gafford ◽  
...  
2009 ◽  
Vol 15 (1) ◽  
pp. 145-155 ◽  
Author(s):  
JIANWU TANG ◽  
PAUL V. BOLSTAD ◽  
JONATHAN G. MARTIN

2013 ◽  
Vol 10 (12) ◽  
pp. 7999-8012 ◽  
Author(s):  
C. L. Phillips ◽  
K. J. McFarlane ◽  
D. Risk ◽  
A. R. Desai

Abstract. While radiocarbon (14C) abundances in standing stocks of soil carbon have been used to evaluate rates of soil carbon turnover on timescales of several years to centuries, soil-respired 14CO2 measurements are an important tool for identifying more immediate responses to disturbance and climate change. Soil Δ14CO2 data, however, are often temporally sparse and could be interpreted better with more context for typical seasonal ranges and trends. We report on a semi-high-frequency sampling campaign to distinguish physical and biological drivers of soil Δ14CO2 at a temperate forest site in northern Wisconsin, USA. We sampled 14CO2 profiles every three weeks during snow-free months through 2012 in three intact plots and one trenched plot that excluded roots. Respired Δ14CO2 declined through the summer in intact plots, shifting from an older C composition that contained more bomb 14C to a younger composition more closely resembling present 14C levels in the atmosphere. In the trenched plot, respired Δ14CO2 was variable but remained comparatively higher than in intact plots, reflecting older bomb-enriched 14C sources. Although respired Δ14CO2 from intact plots correlated with soil moisture, related analyses did not support a clear cause-and-effect relationship with moisture. The initial decrease in Δ14CO2 from spring to midsummer could be explained by increases in 14C-deplete root respiration; however, Δ14CO2 continued to decline in late summer after root activity decreased. We also investigated whether soil moisture impacted vertical partitioning of CO2 production, but found this had little effect on respired Δ14CO2 because CO2 contained modern bomb C at depth, even in the trenched plot. This surprising result contrasted with decades to centuries-old pre-bomb CO2 produced in lab incubations of the same soils. Our results suggest that root-derived C and other recent C sources had dominant impacts on respired Δ14CO2 in situ, even at depth. We propose that Δ14CO2 may have declined through late summer in intact plots because of continued microbial turnover of root-derived C, following declines in root respiration. Our results agree with other studies showing declines in the 14C content of soil respiration over the growing season, and suggest inputs of new photosynthates through roots are an important driver.


2019 ◽  
pp. 87
Author(s):  
Sergio Sánchez-Ruiz

<p>The main goal of this thesis is the establishment of a framework to analyze the forest ecosystems in peninsular Spain in terms of their role in the carbon cycle. In particular, the carbon fluxes that they exchange with atmosphere are modeled to evaluate their potential as carbon sinks and biomass reservoirs. The assessment of gross and net carbon fluxes is performed at 1-km spatial scale and on a daily basis using two different ecosystem models, Monteith and BIOME-BGC, respectively. These models are driven by a combination of satellite and ground data, part of the latter being also employed as a complementary data source and in the validation process.</p>


2000 ◽  
Vol 151 (9) ◽  
pp. 317-324
Author(s):  
André Granier ◽  
Claire Damesin ◽  
Daniel Epron ◽  
Valérie Le Dantec

The results of an investigation carried through within the ‹Euroflux›-programme in eastern France assessing the carbon fluxes above the canopy of the forest are presented. The photosynthetic activity within the annual and daily cycles are discussed. The high variability of the carbon netbalance and the variation of the total respiration make further research into the understanding of the correlation between the carbon net-balance and the biomass production necessary.


2017 ◽  
Vol 23 (8) ◽  
pp. 3371-3381 ◽  
Author(s):  
Xiangyin Ni ◽  
Wanqin Yang ◽  
Zemin Qi ◽  
Shu Liao ◽  
Zhenfeng Xu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Mbezele Junior Yannick NGABA ◽  
Yves Uwiragiye ◽  
Roland Bol ◽  
Wim de Vries ◽  
Jianbin Zhou

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
João Paulo Gonsiorkiewicz Rigon ◽  
Juliano Carlos Calonego

Abstract Background A field study with the same crop rotations was conducted to test the hypothesis that the soil Carbon fluxes and balances could vary according to the crop species and also mitigate carbon dioxide (CO2) emission. This study aimed to assess the CO2 emission from crop rotations according to C and N inputs from crop residue, the influences on soil organic carbon (SOC) and total soil nitrogen (TN) stocks, identifying the soybean production systems with positive C balance. Triticale (x Triticosecale) or sunflower (Helianthus annuus) are grown in the fall/winter; sunn hemp (Crotalaria juncea), forage sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum), or fallow are the spring treatments, and soybean as a main crop in summer. Results We found that high C inputs from crop residues modify the C dynamics in crop rotations by reducing the C output (CO2) and increasing C sequestration in the soil. In general, the higher SOC, C stocks, and TN in soil surface were due to higher C and N inputs from sunn hemp or forage sorghum crop residues in spring. These crops also produced lower accumulated CO2 emissions and, when rotating with triticale in the fall-winter season resulted in a positive C balance, making these soybean crop rotations more efficient. Conclusion Our study suggests the ideal crop species choice in a rotation can mitigate the CO2 emissions by increasing C and N input from crop residues and consequently SOC and C stocks. In particular, crop rotation comprises an important tool to achieve a positive C balance, mitigate CO2 emissions and provide an additional ecosystem service to soybean cultivation option.


2020 ◽  
Vol 1 ◽  
Author(s):  
S. Shepperd ◽  
A. Thomson ◽  
D. Beaumont ◽  
T. Misselbrook ◽  
H. Jones ◽  
...  

AbstractAgricultural intensification within forage systems has reduced grassland floral diversity by promoting ryegrass (Lolium spp.), damaging soil functionality which underpins critical ecosystem services. Diverse forage mixtures may enhance environmental benefits of pastures by decreasing nutrient leaching, increasing soil carbon storage, and with legume inclusion, reduce nitrogen fertilizer input. This UK study reports on how species-rich forage mixtures affect soil carbon, phosphorus, and nitrogen at dry, medium and wet soil moisture sites, compared to ryegrass monoculture. Increasing forage mixture diversity (from 1 to 17 species) affected soil carbon at the dry site. No effect of forage mixture on soil phosphorus was found, while forage mixture and site did interact to affect soil nitrate/nitrite availability. Results suggest that forage mixtures could be used to improve soil function, but longer-term studies are needed to conclusively demonstrate environmental and production benefits of high-diversity forages.


Sign in / Sign up

Export Citation Format

Share Document