Targeting Dinitrophenol to Mitochondria: Limitations to the Development of a Self-limiting Mitochondrial Protonophore

2006 ◽  
Vol 26 (3) ◽  
pp. 231-243 ◽  
Author(s):  
Frances H. Blaikie ◽  
Stephanie E. Brown ◽  
Linda M. Samuelsson ◽  
Martin D. Brand ◽  
Robin A. J. Smith ◽  
...  

The protonmotive force (Δp) across the mitochondrial inner membrane drives ATP synthesis. In addition, the energy stored in Δp can be dissipated by proton leak through the inner membrane, contributing to basal metabolic rate and thermogenesis. Increasing mitochondrial proton leak pharmacologically should decrease the efficiency of oxidative phosphorylation and counteract obesity by enabling fatty acids to be oxidised with decreased ATP production. While protonophores such as 2,4-dinitrophenol (DNP) increase mitochondrial proton leak and have been used to treat obesity, a slight increase in DNP concentration above the therapeutically effective dose disrupts mitochondrial function and leads to toxicity. Therefore we set out to develop a less toxic protonophore that would increase proton leak significantly at high Δp but not at low Δp. Our design concept for a potential self-limiting protonophore was to couple the DNP moiety to the lipophilic triphenylphosphonium (TPP) cation and this was achieved by the preparation of 3-(3,5-dinitro-4-hydroxyphenyl)propyltriphenylphosphonium methanesulfonate (MitoDNP). TPP cations accumulate within mitochondria driven by the membrane potential (Δψ), the predominant component of Δp. Our hypothesis was that MitoDNP would accumulate in mitochondria at high Δψ where it would act as a protonophore, but that at lower Δψ the accumulation and uncoupling would be far less. We found that MitoDNP was extensively taken into mitochondria driven by Δψ. However MitoDNP did not uncouple mitochondria as judged by its inability to either increase respiration rate or decrease Δψ. Therefore MitoDNP did not act as a protonophore, probably because the efflux of deprotonated MitoDNP was inhibited.

1997 ◽  
Vol 17 (3) ◽  
pp. 251-257 ◽  
Author(s):  
David G. Nicholls

The proton conductance of the mitochondrial inner membrane can be quantified by applying Ohm's law to the experimentally determined protonmotive force and the proton current flowing around the proton circuit in the absence of ATP synthesis or ion transport. This last parameter is derived from the rate of State 4 respiration multiplied by the H+/O stoichiometry for the substrate. When the activity of the dehydrogenase supplying electrons to the respiratory chain is progressively increased the proton conductance increases rapidly when the protonmotive force is greater than 220 mV. The consequences of this non-ohmic relationship are discussed.


2004 ◽  
Vol 287 (2) ◽  
pp. R314-R321 ◽  
Author(s):  
M. E. Chamberlin

The midgut of the tobacco hornworm ( Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F1F0 ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium.


2004 ◽  
Vol 382 (2) ◽  
pp. 511-517 ◽  
Author(s):  
Adrian J. LAMBERT ◽  
Martin D. BRAND

The relationship between protonmotive force and superoxide production by mitochondria is poorly understood. To address this issue, the rate of superoxide production from complex I of rat skeletal muscle mitochondria incubated under a variety of conditions was assessed. By far, the largest rate of superoxide production was from mitochondria respiring on succinate; this rate was almost abolished by rotenone or piericidin, indicating that superoxide production from complex I is large under conditions of reverse electron transport. The high rate of superoxide production by complex I could also be abolished by uncoupler, confirming that superoxide production is sensitive to protonmotive force. It was inhibited by nigericin, suggesting that it is more dependent on the pH gradient across the mitochondrial inner membrane than on the membrane potential. These effects were examined in detail, leading to the conclusions that the effect of protonmotive force was mostly direct, and not indirect through changes in the redox state of the ubiquinone pool, and that the production of superoxide by complex I during reverse electron transport was at least 3-fold more sensitive to the pH gradient than to the membrane potential.


Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 929-938
Author(s):  
G D Clark-Walker ◽  
X J Chen

Abstract Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for ρ0-lethality has been identified by disruption of nuclear genes encoding electron transport and F0-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, ΔΨ, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F1F0-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or ρ0-lethality can be suppressed by the atp2.1 mutation in the β-subunit of F1-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F1, allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain ΔΨ. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F1 acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of ρ0-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Soroosh Solhjoo ◽  
Brian O’Rourke

Mitochondrial uncoupling due to oxidative stress can, through opening of sarcolemmal KATP channels, alter cellular electrical excitability, and it has been proposed that mitochondrial function is a major factor in arrhythmogenesis during ischemia-reperfusion. Here, we examine the effects of ischemia-reperfusion on mitochondrial inner membrane potential (ΔΨm) and corresponding changes in electrical excitability and wave propagation in monolayer cultures of neonatal rat ventricular myocytes. Changes in ΔΨm were observed using TMRM and changes in the sarcolemmal voltage were recorded with a 464-element photodiode array using di-4-ANEPPS. Ischemia was induced by covering the center part of the monolayer (D = 22 mm) with a coverslip (D = 15 mm). Cell contractions ceased after approximately 6 min of ischemia; however, electrical activity continued for 11.3 ± 4.2 min (N = 5). Amplitude and conduction velocity of the action potentials in the ischemic region decreased over the same time period. ΔΨm was lost in two phases: a reversible phase of partial depolarization, after 11.2 ± 1.3 min of ischemia, and a nonreversible phase, which happened after 30 ± 6 min of ischemia, during which the whole mitochondrial network of the myocyte became depolarized and the cells underwent contracture (N = 4). Reperfusion after the long ischemia resulted in only partial recovery and the observance of oscillations of ΔΨm in the mitochondrial network or rapid flickering of individual mitochondrial clusters and was associated with heterogeneous electrical recovery, and formation of wavelets and reentry (4/5 monolayers). In contrast, mitochondria fully recovered and reentry was rare (1/5 monolayers) for reperfusion after the short ischemia (10-12 min). 4’-chlorodiazepam, an inhibitor of inner membrane anion channels, stabilized mitochondrial function after the long ischemia, and prevented wavelets (5/5 monolayers) and reentry (4/5 monolayers). In conclusion, incomplete or unstable recovery of mitochondrial function after ischemia correlates with reentrant arrhythmias in monolayers of cardiac myocytes. Our findings suggest that stabilization of mitochondrial network dynamics is an important strategy for preventing ischemia/reperfusion-related arrhythmias.


2001 ◽  
Vol 280 (4) ◽  
pp. H1762-H1769 ◽  
Author(s):  
Masayuki Taniguchi ◽  
Craig Wilson ◽  
Charlene A. Hunter ◽  
Daniel J. Pehowich ◽  
Alexander S. Clanachan ◽  
...  

Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 ± 2.2 mV) versus aerobic (185.8 ± 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 ± 2.9 mV). At the maximal attainable membrane potential, O2consumption (nmol O2 · mg−1 · min−1) did not differ between untreated or DCA-treated hearts (128.3 ± 7.5 and 120.6 ± 7.6, respectively) but was significantly greater than aerobic hearts (76.6 ± 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H+production from glucose metabolism to 53% of untreated hearts. Because H+ production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.


2009 ◽  
Vol 8 (11) ◽  
pp. 1792-1802 ◽  
Author(s):  
Lixia Jia ◽  
Jasvinder Kaur ◽  
Rosemary A. Stuart

ABSTRACT The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.


2008 ◽  
Vol 183 (7) ◽  
pp. 1213-1221 ◽  
Author(s):  
Stephan Kutik ◽  
Michael Rissler ◽  
Xue Li Guan ◽  
Bernard Guiard ◽  
Guanghou Shui ◽  
...  

The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.


Sign in / Sign up

Export Citation Format

Share Document