Characteristics of effective industrial packings for evaporative cooling of circulating water in cooling towers

2009 ◽  
Vol 45 (7-8) ◽  
pp. 402-405
Author(s):  
A. M. Kagan ◽  
A. S. Pushnov ◽  
M. G. Berengarten ◽  
A. S. Ryabushenko ◽  
V. I. Shishov
2019 ◽  
Vol 116 ◽  
pp. 00081
Author(s):  
Alexander Solovyev ◽  
Dmitriy Solovyev ◽  
Liubov Shilova ◽  
Aleksey Adamtsevich

The paper aims to perform numerical modelling of the operation of large-scale evaporative cooling towers of power plants considering dynamically changing hydrometeorological conditions. The proposed modelling was performed based on the developed mathematical algorithm for studying the influence of turbulent vortex motions on the processes of atmospheric cooling of circulating water in countercurrent cooling towers of power plants. According to the simulation results, the optimal heat exchange modes of cooling towers operation are determined and recommendations for the practical implementation of measures to improve their thermal efficiency in hot periods of the year are proposed.


2019 ◽  
Vol 29 (10) ◽  
pp. 1346-1358 ◽  
Author(s):  
Sebastian Englart

This study discusses the use of a membrane module for semi-direct evaporative air cooling. A cross-flow membrane module was used to carry out this air treatment process. For such a flow, it was proposed to describe and solve the heat and mass transfer model as a one-dimensional problem. The mathematical model was used to determine the moisture content and air temperature at the outlet from the module and the temperature of the circulating water. Results obtained using the proposed model are in good agreement with the experimental data. The relative error for the air temperature at the module outlet did not exceed 0.5%. For the moisture content, the relative error did not exceed 4%. For the circulating water temperature, the relative error did not exceed 0.6%. This paper also discusses the heating efficiency of the evaporative cooling process. Methods for determining the unit cooling indicator and the energy efficiency ratio are also proposed.


2007 ◽  
Vol 41 (6) ◽  
pp. 371-378
Author(s):  
R. E. Gel’fand ◽  
B. L. Sverdlin ◽  
O. S. Nikolaeva

Author(s):  
J. M. Burns ◽  
D. C. Burns ◽  
J. S. Burns

Section 316(b) of the Clean Water Act regulates the potential environmental impacts of cooling water intakes in order to mitigate the adverse entrainment and impingement effects on aquatic organisms. The recently proposed EPA regulations require that power plants currently using once-through cooling systems at the very minimum, evaluate the cost and environmental benefits of retrofitting to wet or dry cooling towers for their next permit application. However, a sound cooling tower retrofit assessment cannot be confined to cooling tower issues alone. Cooling tower backfits significantly affect the entire cooling system and generating capacity. Though the industry still awaits the EPA’s February 2004 final action ruling to clarify the regulations for existing plants, it is clear that acceptable methods of plant compliance with 316(b) regulations will be decided based upon the costs of new technology available, including cooling tower retrofits. A plant not able to meet the tight impingement and entrainment reduction percentages required under 316(b) will be required to consider the cost of retrofitting technologies versus the expected environmental benefit. The EPA has complied standard costs for retrofitting cooling towers that are extremely optimistic and limited in their scope, and thus tend to be far lower than a plant would actually accrue during a retrofit. These EPA costs of compliance are accepted by default in the cost-benefit analysis unless a plant can make a compelling case that their site-specific costs are much higher than EPA’s estimate or are wholly disproportionate to the environmental benefits accrued by such a retrofit. In either case, an overly simplistic and non-comprehensive tower retrofit cost estimate will increase the chances of a plant being required to implement a closed-cooling system retrofit, which in nearly all cases is the most costly and difficult alternative. In addition to constructing a tower, a cooling tower retrofit also alters many parts of the existing cooling system. Typically, a once-through condenser is designed to operate in a siphon circuit using low pressure buried piping under the turbine building. The condenser, along with its piping, would likely have to be modified to be compatible for a conversion to a higher pressure closed-loop system. The retrofit would require installation of new circulating water pumps to provide the additional required head. Portions of the plant’s large diameter circulating water piping systems and intakes must be decommissioned or redesigned to accommodate the retrofit. The critical parts of any retrofit evaluation will be to identify the site-specific modifications required for a conversion with a reasonably accurate estimate of capital costs. An accurate retrofit evaluation must reflect the impacts on all of the circulating water system components along with the adjusted overall performance. Obtaining accurate cost data on the full scope of a retrofit project is difficult due to many factors. There have been only a handful of cooling tower retrofits in the U.S. The experiences from these are mostly inapplicable due to either their small size or unique factors that facilitated the cooling system conversion. The site-specific nature of each retrofit, including the interpretation of a matrix of environmental siting issues, makes cooling system retrofit estimates very complex. Developing an accurate estimate requires a thorough review the existing cooling system design equipment, features & layout. These data are best obtained from a site visit and interviews with key system and operations personnel. Retrofit budgets for this evaluation should not be based on very “generic” cases prepared without regard to site-specific design & operating limitations. Instead, a realistic turnkey retrofit budget is based on a well planned project that confronts the broad scope of a retrofit including the range of site-specific factors. This paper will summarize the art of the retrofit and provide considerations to develop more reliable and meaningful closedcycle retrofit cooling system cost estimates. It will describe the critical characteristics of cooling towers, pumps, circulating water piping, and condenser modifications. It will provide recommendations to produce reasonably accurate evaluations of the seasonal and peak period (energy penalty) effects of the retrofitted cooling system on plant generation. In fact, those conversion costs and the negative effects on plant generation are the key to determining the realistic effects of a proposed retrofit. Finally, it will present the major consequences of trading-off the adverse aquatic environmental impacts with airborne ones from a retrofitted wet cooling tower.


The Lancet ◽  
1987 ◽  
Vol 329 (8534) ◽  
pp. 684 ◽  
Author(s):  
JenniferS. Colbourne ◽  
P.Julian Dennis ◽  
JohnV. Lee ◽  
MichaelR. Bailey

Sign in / Sign up

Export Citation Format

Share Document