scholarly journals Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping

2011 ◽  
Vol 15 (4) ◽  
pp. 240-258 ◽  
Author(s):  
Tetsuya Shishido ◽  
Kentaro Teramura ◽  
Tsunehiro Tanaka
2021 ◽  
Author(s):  
Caleb Hoopes ◽  
Francisco Garcia ◽  
Akash Sarkar ◽  
Nicholas Kuehl ◽  
David Barkan ◽  
...  

Tryptophan (Trp) plays a variety of critical functional roles in protein biochemistry however, owing to its low natural frequency and poor nucleophilicity, the design of effective methods for both single protein bioconjugation at Trp as well as for in situ chemoproteomic profiling re-mains a challenge. Here, we report a method for covalent Trp modification that is suitable for both scenarios by invoking photo-induced electron transfer (PET) as a means of driving efficient reactivity. We have engineered biaryl N-carbamoyl pyridinium salts that possess a donor-acceptor relationship enabling optical triggering with visible light whilst simultaneously attenuating the probe’s photo-oxidation potential in order to prevent photodegradation. This probe was assayed against a small bank of eight peptides and proteins, where it was found that micromolar concentrations of probe and short irradiation times (10-60 min) with violet light enabled efficient reactivity towards surface exposed Trp residues. The carbamate transferring group can be used to transfer useful functional groups to proteins including affinity tags and click handles. DFT calculations and other mechanistic analyses reveal correlations between excited state lifetimes, relative fluorescent quantum yields, and chemical reactivity. Biotinylated and azide-functionalized pyridinium salts were used for Trp profiling in HEK293T lysates and in situ in HEK293T cells using 450 nm LED irradiation. Peptide level enrichment from live cell labelling experiments identified 290 Trp modifications, with an 82% selectivity for Trp modification over other π-amino acids; demonstrating the ability of this method to identify and quantify reactive Trp residues from live cells.


Author(s):  
Hanna Lyle ◽  
Suryansh Singh ◽  
Michael Paolino ◽  
Ilya Vinogradov ◽  
Tanja Cuk

The conversion of diffusive forms of energy (electrical and light) into short, compact chemical bonds by catalytic reactions regularly involves moving a carrier from an environment that favors delocalization to one that favors localization.


2016 ◽  
Vol 4 (25) ◽  
pp. 4430-4438 ◽  
Author(s):  
Jin-Tao Wang ◽  
Yanhang Hong ◽  
Xiaotian Ji ◽  
Mingming Zhang ◽  
Li Liu ◽  
...  

Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.


RSC Advances ◽  
2013 ◽  
Vol 3 (45) ◽  
pp. 23255 ◽  
Author(s):  
Yousuke Ooyama ◽  
Koji Uenaka ◽  
Ai Matsugasako ◽  
Yutaka Harima ◽  
Joji Ohshita

2004 ◽  
Vol 856 ◽  
Author(s):  
Alexandru D. Asandei ◽  
Isaac W. Moran ◽  
Gobinda Saha ◽  
Yanhui Chen

ABSTRACTTi(III)Cp2Cl-catalyzed radical ring opening (RRO) of epoxides or single electron transfer (SET) reduction of aldehydes generates Ti alkoxides and carbon centered radicals which add to styrene, initiating a radical polymerization. This polymerization is mediate in a living fashion by the reversible termination of growing chains with the TiCp2Cl metalloradical. In addition, polymers or monomers containing pendant epoxide groups (glycidyl methacrylate) can be used as substrates for radical grafting or branching reactions by self condensing vinyl polymerization. In addition, Ti alkoxides generated in situ by both epoxide RRO and aldehyde SET initiate the living ring opening polymerization of ε-caprolactone. Thus, new initiators and catalysts are introduced for the synthesis of complex polymer architectures.


Sign in / Sign up

Export Citation Format

Share Document